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ORIENTATION

This is Part VI of a six-part report on the results of an

investigation into the problem of determining the scattered field

resulting from the interaction of a given electromagnetic incident

wave with a perfectly conducting body executing specified motion and

deformation in vacuum. Part I presents the principal results of the

study of the case of a general motion, while Part II contains the

specialization and completion of the general reasoning in the situation

in which the scattering body is stationary. Part III is devoted to

the derivation of a boundary-integral-type representation for the

scattered field, In a form involving scalar and vector potentials.

Parts IV, V, and VI are of the nature of appendices, containing the

proofs of numerous auxiliary technical assertions utilized in the

first three parts. Certain of the chapters of Part I are sufficient

preparation for studying each of Parts III through VI. Specifically,

the entire report is organized as follows:

Part 1. Formulation and Reformulation of the Scattering

Problem

Chapter 1. Introduction

Chapter 2. Manifolds in Euclidean Spaces.
Regularity Properties of Domains
(Summry of Part VII

Chapter 3. Motion and Retardation
[Sw-ary of Part VI



Chapter 4. Formulation of the Scattering Problem.
Theorems of Uniqueness

Chapter 5. Kinematic Single Layer Potentials
[Suary of Part IV]

Chapter 6. Reformulation of the Scattering Problem

Part II. Scattering by Stationary Perfect Conductors
[Prerequisites: Part I]

Part III. Representations of Sufficiently Smooth Solutions
of Maxwell's Equations and of the Scattering
Problem
[Prerequisites: Section [1.1.41, Chapters [1.2
and 3], Sections [1.4.1] and (1.5.1-10]]

Part IV. Kinematic Single Layer Potentials
[Prerequisites: Section [1.1.4], Chapters [1.2
and 3]]

Part V. A Description of Motion and Deformation. Retardation
of Sets and Functions
[Prerequisites: Section [1.1.4], Chapter 11.2]]

Part VI. Manifolds in Euclidean Spaces. Regularity
Properties of Domains
[Prerequisite: Section [1.1.4]]

The section- and equation-numbering scheme is fairly self-

explanatory. For example, "[1.5.4]" designates the fourth section of

Chapter 5 of Part I, while "(1.5.4.1)" refers to the equation numbered

(1) in that section; when the reference is made within Part I,

however, these are shortened to "[5.4]" and "(5.4.1)," respectively.

Note that Parts II-VI contain no chapter-subdivisions. "[IV.141"

indicates the fourteenth section of Part IV, "(IV.14.6)" the equation

numbered (6) within that section; the Roman-numeral designations are

never dropped in Parts II-VI.
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A more detailed outline of the contents of the entire report

appears in [1.1.2]. An index of notations and the bibliography are

also to be found in Part I. References to the bibliography are made

by citing, for example, "Mikhlin [34]." Finally, it should be

pointed out that notations connected with the more common mathematical

concepts are standarized for all parts of the report in [I.1.4].

I



PART VI

MANIFOLDS IN EUCLIDEAN SPACES.

REGULARITY PROPERTIES OF DOMAINS

The major portion of Chapter [1.2] comprises just those defi-

nitions and bare statements of technical results concerning manifolds

in Euclidean spaces, Lebesgue measure and integration on such mani-

folds, and the implications of various regularity hypotheses for

open sets in a Euclidean space, which are needed in the subsequent

study of the scattering problem. This essentially self-contained

Part VI is an expanded version of that same material, providing the

requisite auxiliary concepts and complete proofs. The development

draws freely upon, and modifies, presentations appearing in

Fleming [14, 15], Munkres (40], GUnter (19], and !ikhlin (34].

We begin with two standard results.

[VI.l] I N V E R S E F U N C T I O N T H E O R E M. Let

n E 4 (O'th n >_ 2, and q E J{-}. Let U C]Rn  be open and

fq = cq(u,. n ) and suppos e that x 0 c U with Jf(x0 ) , 0. Then

thee exi6t an open neighbwthocd o6 x0 , U0 C U, such that

(i) fo :" fl U0 i. an injection;

(ii) f(U 0 ) is open in Rn;



-2-

{1 ] foI  E C q(f(U);Mn)

(iv) Jo% each x e u0 , Jf(x) # 0, and {Df(x)} - =

(Df01 )(f(x)).

P R 0 0 F. Cf., Fleming [15]. 0.

[VI.2] I M P L I C I T F U N C T I O N T H E O R E M. Let

n,mEIN wi L m < n, and q ENU}. SupposeZ that U C n is open,

't c Cue), and x0 E U Zi such that o(x 0 ) - 0 and D(x 0 )

haz (maximum) tank m. Thezn them'e exzt an open neighbo.'Jood U0 c U

of x@, an op i V Cv n-m an incAeZasing (n-m)-tupte0

P (io .' m) oiZntege'u in {1,...,n}, and a unique

6unction *E cq(V0m ) such that, with (jl....'Jm) denotin9 the

incAeaing m-tupte o6 integeu in {1,...,n} Comp nenCty to A,

i I
() det (0, J (x)) #ik~ 0 o 6o4 each x E u0

XI) x0 - (x 0 ,...,x 0 n-m) V 0 ;

(/w.) {xE u01 (x) - 0} -

{x E]Rn, XI  (1i n-m) k kX

x- (x,...,x E V0, x - (x

k-i, ... .,m}.

We shall give an outline of the proof, in order to point out

the construction of an auxiliary functionwhich turns out to be of

later use.

P R 0 0 F (S K E T C H). Since D$Cx0 ) has rank m, there is an
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increasing m-tuple (J,...,Jm) of integers in {l,...,n) such

that det (0# 0. Let X - (il,..,i) denote the

increasing (n-m)-tuple of integers in {l,...,n} which is comple-

mentary to (J1,...,Jm). Define a function f: U ,n according to

f kx) :- x ik , k - 1,....n-m,

fn-m+k W 0k Wfn- (x) :- Ckx), k = l..m

for each x E U. Clearly, f E Cq(u Rn). A short computation and

use of the properties of determinants produce the equality lJf(x) =

Idet (! (X)) _ for each x E U. In particular, we find
1k <i,k<m

then that Jf(x O) # 0. According to the Inverse Function Theorem

[VI.1], there exists an open neighborhood U0 C U of x0  such that

Jf(x) 0 0 for each x E UO, f0 :- fj UO : U0 -) f(U0 ) is a
homeomorphism of U0  onto the open set M ) CRn, and fl E

U0  onoteoe0e 0
cq(f(Uo0);in).

iI  i
Noting that f(xo) - (x0 ,...,xon-o...,O) E f(U0) , we

see that the set

V0:-{ R n-ml (x,O) : ,.,nmo . . 0 ) E f(Uo0)}

contains x and is open in sn-R, since f(U) is open in

Define 0: V 0 m by

k (f) : 0 (f1) k(x l ,...,x n -m ,O ,...,0), for each oE

k E {i .. ,m}.
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Then it is routine to check that * E cq(V 0 e ) and that (iii)

holds. To show that 0 is unique, let ;: V0  M be any

function satisfying (iii): choosing i E V0, define x and i E n

ik -k k k
by x x : x , for k - 1,...,n-m, and x := Cx),

x :- k (x), for k l,...,m. Then x - x = x, and (iii)

gives x, x 6 U0, with O(x) = $(i) - 0. Obviously, it follows

that f0(x) - f0 (), whence x ic, since f0  is injective.

k k (:j
Consequently, *k(i) 0 (x) for k l,...,m. Thus, 0 = . .

We proceed to the definition of "manifold" in a Euclidean

space. We shall not need the idea of a "manifold with boundary"

(cf. Munkres [40]), and so we can avoid introducing this more

inclusive concept.

[VI.3] D E F I N I T I 0 N. Let n E I and q E M{-}. A non-

void open set in M n  shall be referred to as an (n,n;q)-maj-fcld,

whenever it is convenient to do so. Now suppose that r E 1. and

r < n (so n > 2): a non-void set M CIRn is a manifold of

diemenion r and ctasA cq, or (r,n;q)-man-iotd, iff whenever

x E M, there exist an open neighborhood U C Rn of x and ax

function 0 6 Cq(U x n-r) such that rank DO (y) - n-r for eachfuto C x x

y E Ux, and

6Ux = y Ux1 x(Y) - 0}. I.

[VI.41 R E M A R K S. (a) It is clear that if M is an (r,n;q)-

manifold (r < n) and H is a relatively open subset of M, then
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M is also an (r,n;q)-manifold.

(b) Just as obvious is the fact that a non-void set M CIn

is an (r,n;q)-manifold iff each x E M possesses a relatively

open neighborhood M C M such that M is an (r,n;q)-manifold.x 
x

(c) Let M be an (r,n;q)-manifold: then MYIR is an

(r+l,n+l;q)-manifold. To see this, suppose first that r < n.

Let (x, t) E M1R, then U C Rn , 0 E Cq(U x Rn-r) be as in [VI.3].

U x R C M n+ l is an open neighborhood of (x,t). Define (x,t):

x

U x m x3 R n-r , (n+l)-(r+l) by 0(xt)(y ) :- 0x ( y), (ys) E UxI.

For each (y,s) E U xAR, the matrix of D (x,t)(Ys): IRn+l -IRn-r

relative to the standard bases is

r
0 l () <icn-r 0 

(1lj<n 0

Clearly, rank D (x,t)(Ys) n-r - (n+l)-(r+l) for each (y,s) E

Ux ×, while {MW]Rr} {U x )R = {(y,s) E U xR m 1 (x,t)(Ys) - 0}. The

case r = n is even more trivial.

For any (r,n;q)-manifold M and any x E M, we shall

define associated "tangent" and "normal" spaces to M at x, as

follows:

[VI.5] D E F I N I T I 0 N S. Let M be an (r,n;q)-manifold,

and x E M. B EIR n is a tangcknt vectoA tO M tt x iff there is

a 6 > 0 and a function * E Cn((-6,6)JR) such that tp(s) E M
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for Isl < 6, 4(O) - x, and '(O) - S. The set of all tangent

vectors to M at x is called the ta ngent 6pace to M at x,

and denoted by TM(x). The orthogonal complement of T Mx) in In

shall be referred to as the notma Apace to M at x, and denoted

by NM(X). 1.

It is easy to show that TM(X) m]n and NM(x) - {0) for

any (n,n;q)-manifold (non-void open set C i n) M and any x E M.

In the general case, it is clear that 0 E T M(x), and it can be

MMproven directly that TM(X) is a subspace of 1Rn. The implicit

function theorem allows us to show that TM(X) is non-trivial, by

showing that it has dimension r; as noted, we shall consider this

fact proven for the case r = n.

[VI.6] P R 0 P 0 S I T 1 0 N. Let M be an (r,n;q)-mani'od,

with r < n; Zet x E M. Then TM(x) iz an r-dimaeic.naZ zubspace

O , n. In dCct, j6 Ux C mn and ox • cq (Uax n - r ) a a i

[VI.A3], then

TM(x) - ker DO xW).
M x

P R 0 0 F. Noting that dim ker DO (x) - r, since DO (x):x x

En . n-r and rank DCx) - n-r, the first statement will follow
x

once the second has been proven.

Suppose then that 8 E TM(x); 6 - g)'(0) for some , E

C ((-6,,), n ) as in [VI.51. Since i is continuous, and U

is a neighborhood of x - 4,(0), there is some 6' E (0,51 for which
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;P(s) E U xnM whenever Isl < 6', sc also t (C(s)) - 0 for

Isl < 6'. Differentiating, by the composite function theorem, and

setting s - 0 gives DO x(T(0))*'(0) - 0, or Dx (X) W - 0. Thus,

B e ker DO x).x

Now, let B e ker DO (x): we show that there exists a 6 > 0

and a function * as in [VI.5]. For this, observe that, since

x e Cq(Ux n - r) , with rank DOxCx) - n-r, x E Ux, and 0x() - 0,

we can appeal to the construction carried out in the proof of the

implicit function theorem: there exist an increasing r-tuple

A - (il,...,ir) of integers in {1,...,n) and an open neighborhood

U0 C Ux  of x such that the function f0 : U0  .m]Rn given by

k k

f0 (y) :- y , k- 1,...,r,

fr+k. k
f0 kY) :0 k(y), k - 1,...,n-r,

for each y E U0, is in C q(u 0 ]n), is a homeomorphism of U0

onto the open set fOU 0), and for which f0  E (f0 (U0) n).

As in the proof of [VI.2], the set

0 : Er ,0 y: ,...,y,0,...,0) •f 0 (U0 )

S i r

is an open neighborhood of x- CX ,...,x in mr. Hence,

there is a 6 > 0 such that x +sS E V0  whenever Isi < 6, so

it is permissible to define j: (-,,6) -n according to

-(S) f "I1(x +sBa,0), for each s • (-6,6).

09
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We claim that this p fulfills the requirements of [VI.5]. Since

f0 Cq(ff0 (U0) n), certainly 6 Cl((- 6 ,6) ,Rn). Whenever

Isl < 6, fol(x +sB 0) U C U and

0k f-l( A +BAm _ r+k (f-1 (xA + A')SCx s O) f0 0 0x+S,)

a (xA+sS X, 0)r+k

- 0, for k - l,...,n-r,

showing that *,(s) E U and 0 (,(s)) - 0, so p(s) 6 M. Also,x x

P(0) f f0(x ,0) - f0 (f0 (x)). Finally, we must show that '(0) E:

since P'(s) {(D 0 ) X +sB ,O)}(BX,0) if Isl < 6, we have

'(o) {(Df )(xx ,0)}(W,0) {Df0 (f 0 (x))}(8 ',0)

{Df0 (x)- I(S,0), the latter equality following from [VI.l.iv],

in view of the manner in which f was constructed. Now,

1 fk (x)' - 6 jiks 8 for k - 1,...,r, and
j-l j-l u

n n
n fr+I(x)B i - 0 ,(x)B j - 0 for Z - 1,... ,n-r, since

j-l 0jj!-1 x,j

DO x)S - 0. These facts show that Df0 (x)B - ( ,0), whence

a - {Df0 (x)}-1 (S ,0). Thus, '(O) - S. We conclude that B E

TMx). 0.

[VI.7] C 0 R 0 L L A R Y. Let M be an (r,n;q)-manifcd ith
cn q (U :oCq  n-r

r<n. Let x E M. Let U C " and x beasi
x x.

k n-r
(VI.3]. Then the 4-t (grad C(x)}k= povide a basl 6o

NM(x).

iA
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P R 0 0 F. NM(x) is the orthogonal complement of TM(x). Clearly,

then, NM (x) has dimension n-r. Since D x(x) has rank n-r,
k n-r

the set (grad 0 (x))kr is linearly independent. Whenever
x k-i

8 E TM(x)  ker DO xW), DOx(X) - 0, implying that grad ck(x) -
k n-rCN(X Th

0, for k - 1,...,n-r. Thus, {grad 0 k(x) C N x. The
x k-i M

statement of the corollary obviously follows from these facts. 0.

[VI.8] R E M A R K. Consider, as in [VI.4.c], the (r+l,n+l;q)-

manifold MWIR, where M is an (r,n;q)-manifold. Let x E M, and

Ux it be as in [VI.3]. Choosing t EIR and constructing
x and E Cq (U xt n - r )

U U uxm and 0 4R as in [VI.4.c], it
(x,t) :3x (x,t) (x,t)

is clear from the form of the matrix (VI.4.1) that ker D (x,t) -(x,t)

TM(x)XR, since ker DOx(x) - TM(x). Consequently, T MXR(x,t) -

T M(x)xR, for each (x,t) E WI.

The next objective is the study of functions on a manifold

into a Euclidean space; for this, the idea of a cco' tdiilate j,6.tCm

in a manifold is an indispensable tool. Such coordinate systems

also provide the means for defining Lebesgue measure on a manifold.

Before discussing these topics, we consider %egutat tAani¢ctatic.1

(cf., Fleming [15]).

[VI.91 D E F I N I T I 0 N S. Let r,n e6 , with r < n, and

q 6IPJ-{®. Let S1 be an open set in R r , M an (r,n;q)-manifold,

n
and g: Q .n.

(i) If g E C, (n), we define Jg: Q2 [0,-) by
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r r
Jg(x) :- I1 ^  xi ) - D ()ei

(1)

for each x E 0.

(ii) Suppose g(O) C M. Then g is q-ueguaA iff

(l) g E cq(Q;n),

(2) g is injective,

(3) rank Dg(x) = r, for each x E 0. U.

[VI.10] R E M A R K S. (Notation as in [VI.91)

(a) Suppose f e Cl( 2 Rn). The (r,n)-vector

g,(X)A ...Agr (x) is non-zero, i.e., Jg(x) > 0, for some x E 0,
r n

iff the set {g,r(X)}k~l CR is linearly independent, which,

in turn, is true iff rank Dg(x) - r (since {g,k(X)} r,-I  is just

the collection of column vectors of the matrix of Dg(x): IR -r

with respect to the standard bases). Thus, condition [VI.9.ii.3]

holds iff Jg(x) > 0 for each x E 2.

(b) Consider the case r - n, and suppose g: C -, Fn

is q-regular. Then M is an open set in Rn, which we can take

to be just Mn itself. Now, rank Dg(x) - n, so Jg(x) 0 0,

for each x E 0. Since g E C ;in ) is injective, it follows from

the inverse function theorem that g () C In is open, g is a

homeomorphism of Q onto g(Q), and g-i E Cq(g(Q) Rn), g is

sometimes referred to as a ta.t Aau13notmaticn in this case.

(c) Again supposing r = n, so 2 CR n, let g E C
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Now it can be shown that Jg(x) - lJg(x)l, for each x E 0, cf.,

the proof of [VI.13], infta, which appears in Fleming [14]. In

any case, i.e., whenever r < n and g G Cl(PRn), it can be shown

that

tht IDg(x)T1 . .ADg(x)Trr

.Jg(x) = [ITA. .-.AT - x ,

r (r)
for any choice of basis {Til r for mr if Ti  e i r

1,...,r, this expression reduces to (VI.9.1), since

le (r )A -.-Ae (r )  i. Once again, we refer to Fleming [14] for the1 r

proofs of these statements; cf., also, [VI.24.c], indfa.

We Droceed to provide several basic facts concerning regular

transformations.

[VI.1] P R O P 0 S I T 1 0 N. Let f be open in jRr, M an

(r,n;q)-manZoZd, and g: Q -Rrn be p-reguta t (p E wJ{-}),

With g() C M. Let x6 rn. Then

(i) Dg(x): mr - n Z6 an injection taking oo

T M(g(x));

r(LU1 {g,i(x)}i~ Z a ba~L dco. TM(g~x)).

P R 0 0 F. Dg(x) is linear, defined on IR , and has rank r

(in particular, it is injective), while TM(g(x)) is an r-

dimensional subspace of Mn . Therefore, we need only demonstrate

that Dg(x)Jr C TM((x)) in order to prove (i). If r - n, then
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TM(g(x)) =]Rn, and the result is obvious, so we may suppose that
Mn

r < n. Let Ug(x ) C n and $g(x) e Cq(Ug(x) R 
n- r ) be as in

[VI.3]. Let n2 C 2 be an open neighborhood of x such thatx

g(Qx) C Ug() . Since g(2) C M, we have g( x) C M!'Ug(x), whence

Sg(x)(g(y)) - 0 for each y E nx" The composite function theorem

then shows that Dg(x) (g(x))oDg(x): ]Rr .en-r is the zero

operator, so D (g(x))(Dg(x)) - 0 for each a EIRr. Byg (x)
[V.6], Dg(x)a E ker D g(x)(g(x)) TM(gx)) for each a IR

r
i.e., Dg(x)]R C TM(g(x)), as required.

To prove (ii), simply note that, by (i), Dg(x) takes any

basis for Rr to a basis for T1(g(x)) , and that gi(x) - Dg(x)eir ,

for i = l,...,r. 0.

[VI.12] N 0 T A T I 0 N. In the setting and notation of Proposi-

tion (VI.ll],we shall denote the inverse of Dg(x): Rr - TM(g(x))

by {Dg(x)}-l: TM(g(x)) _jRr .

[VI.13] P R O P 0 S I T I 0 N. Let f, C] r be open 4ets,

f: l - z be in CP(;r), M anl (r,n;q)-manifotd, and

j: - M be p-Ae9uta,%. Set g :- jof: Q - M. Then

fi) Jf " IJfl;

(Zi) Z6 f Z6 p-regua, then g 46 p-reg uta, and the

equ U.t Jg(x) Jj(f~x))ljfx)I hotd6 6o% each

x C-0
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P R 0 0 F. See Fleming [14]; although his proof is for the case

p - 1, its extension to the case of an arbitrary positive integer

p or p - - is trivial, under the hypotheses given above. 0.

We next present an important method for constructing manifolds,

by formalizing an example appearing in Fleming [14].

(VI.14] L E M M A. Let r,n EN w th r < n, and q EN{}. Let

(i I .... ,i) be an incAe"an9 r-tupLe o6 integ't chosen frtom

{1,...,n), and (J... 'n-r ) the incAeazing (n-r)-tupe

comptemettaay to X in {l,... ,n. Let 2 C r be an open set,

and o E cq(Q;- Define G: s- _Rn by Aetting

Gk) :-x, k=l,...,r,

kk k lr 6 0o r each x E 0.

Then

() G( i) i6 an (r,n;q)-maniLoZd;

(i) G Z6 q-Lega :

(ii/) with * IR denotng the p4ojection map
iI  i) G-I

xl- x (ax ,...,x r), G-1 G(Q) -' Q zjus.t

G(Q), so G i. a homeomrcp'l:m o6 f2 onto

G().

P R 0 0 F. (i) We show that G(P,) CIRn  fulfills all requirements
i i Sof [VI.3]. Set U :- {xE1Rn[ x : (1 .. , r) n}, i.e.,

- |



U - (a). Since Q is open in Ir and F is continuous,

Mn is open. Define 0: U -1R by setting

k Jkk X
(x) :- xk- kCx ), for each x E U, k = 1,... ,n-r.

Obviously, 0 E Cu!R) We have

£ L

0.i(x) = -,k(X )t k , I,.,.,r

xE U, £ = l,...,n-r.
0" (x) £ k 1,I .,n-r

Jk k

It follows that, for x E U, the determinant of the (n-r)x(n-r)

submatrix of (0i(X))i<n.ri<j<n consisting of the columns

indexed Jl' . Jn-r is equal to one. Thus, rank D0(x) - n-r

for each x E U. Observe next that G(Q) - {x G U1 O(x) 0 0}.

For, suppose first that x E G(Q), i.e., x - G(x), i E Q. Then
x -G 1(, ...,G r(,)) = G Sj, so x E U, while 0£(x) =

x- (x ) G (x)-$ (x ) = (x)-£(C) = 0, for Z -9 ,....n-r.

Thus, x E U and O(x) - 0. On the other hand, if we begin with

x 6 U for which O(x) - 0, then xA e and xk ,k(xA)

for 9 - 1,...,n-r. Thus, C(xl) is defined, and G (x x

ikA k A kfor k1,...,r, G(x) k(x) IX for k - 1...,n-r, so

G(xA) x, and x E G().

Now, suppose x E G(Q). Then U is an open neighborhood of

x, 0 C cq(u]nr), DO(y) has rank n-r for each y E U, and

G(Q),U - G(a) - {y 6 U1 0(y) - 0}. We conclude that G(n) is an

(r,n;q)-manifold.
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(ii) Referring to [VI.9.ii], we have just seen that C

takes S onto an (r,n;q)-manifold. It is a simple matter to

check that G E C q(,, n ) and that G is injective. Further, for

x C Q and I=l,...,r, we find

n-r (-)

k rn- *L -i em

G, G (e(n) +~ m -r G (n)e n
ei£ 'kl 11

so that the coefficient of e(n)A. ^Ae(n)
..,\ei in the expansion of the

1 r0e-l

product G, (:j)A...AG, (i), i.e., the Ath  component of the
r

latter, is just 1. This implies that JG(i) :- IG, (j)A... AG, Ci)!

0, so, by [VI.10.a], rank DG(i) - r for each Q G . G is

q-regular.

(il) i
(iii) If G , ( H G(6))(G(x)) -(G 

1 i),...,G r(i)) -

x. If x E G(O), it has been shown that x E Q and c(x) - 0,

whence G(x ) x. Therefore, G((E I G( 2))(x)) - G(xX) - x.

This proves that G - I G(2), so G-: G() - is

continuous. 0.

Regular transformations generated as in [VI.14] are homeo-

morphisms (into). In fact, any regular transformation possesses

this property (we already know this to be true in the case r n;

cf., [VI.10.b]):

IVI.15] P R 0 P 0 S I T I 0 N. Let s be open in r M an
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(r,n;q)-maniwod with r < n, and g: 2 * M be p-regtLtat. Then

() g: 2 - M iz an open mapping;

(ii) g: n -- g(Q) Z6 a homeomrpiziim.

P R 0 0 F. Mi) Let us show first that g() is open in M. For

this, select n G : we prove that x possesses an open neighborhood

Q C 2 such that g(S2 ) is open in M, whence the fact that g(.)
x

is open in M shall follow immediately. Let Ug() CjRn , ( E

c ( -  be as in [VI.31. By the implicit function theorem,

there exist an open neighborhood U C U of g(i), an increasing
0 9i

r-tuple A - (il,...,i ) of integers in {l,...,nl, an open

neighborhood V0 Cr of g(x)A and a function 0 E c(OR

such that

{x r U0  0 g(:)x) - 0} {x ERn xx e V0, x

(1)

k -

where (jl,... Jn-r) is the increasing (n-r)-tuple complementary

to X, in {1,...,n). Note that, since K)U - {x E U
g(i) g(-)

(x) 01
g (x)

MfU 0 -{x E U0 1 g(i)(x) - 0}. (2)

Define, as in [VI.14], G: V0 -* R
n  according to

i k k
Gk(i) := y , k = l,...,r,

for each y E V0. (3)
G Cy ) := *k(y), k - 1,.... ,n-r,



It is easy to verify, using (1) and (2), that G(VO) = WU O . Clearly,

with the necessary changes in notation, the hypotheses of Lemma

[vI.14] are fulfilled in the present setting, so we can assert

that G is a q-regular homeomorphism of V0  onto W'U0, with

inverse G-1 a I (MC'0): MiU0 - V0 . Now, WU is a relatively

open neighborhood of g(i) in M, so there is an open neighborhood

R2 C Q of x for which g(Q ) C M)UO. We can write g(-) =
x i 'x

G(G- (g ))) G( (g(Q))), so if we prove that Hx(g(Q)) C V
x xx 0

is open (in Jr or V0 ), we shall have g(2) open in Mr)U0

(since G is a homeomorphism), hence open in M (since U0 CIRn

is open), which is the desired result. To show then that EA (g(Q)

is open in JR , first define f: S2 -]Rr by f :- o(gj Q).
xk

Since g(Pk) C MWU0 and EA (N 'U0 ) C V0, f(2c) C VO, and it is

easy to see that gj 2- - Gof, in view of the fact that G- 1
x

=I (Mreo ). The injectiveness of g and fl(MnUO ) imply that

f is injective, while it is clear that f E CP(Q;R r). Whenever

E f,, we find Dg(y) - DG(f())oDf(y); since rank Dg(y) - r,

we infer that rank Df(y) - r. Thus, f: Q -' r is p-regular,

so (cf., [VI.10.b]) =A(g(S)) - f(i) is open in R . As noted,

the proof that g(n) is open in M is complete.

Now, to prove (i), let C 0 be open. Obviously, gl

is p-regular, so the reasoning just concluded, with replacing

Q and gI in place of g, shows that g(E) is open in M.

Thus, g: Q - M is open.

-i(ii) We need only verify g :g(S) is continuous,
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i.e., that g: P, - g(P) is open. But the latter fact follows

directly from (i). C.

We should like to identify conditions sufficient to ensure

that the image g(:) C n  of an open set S1 CJr under a function

g: n -JRn be an (r,n;q)-manifold (for r < n; the case r n

is already taken care of). The following fact allows us to do this.

[VI.16] L E M M A. Let r,n E V W th r < n, and q EU{ }.

Suppc, e tzhat s2 is open in ir, ond g E Cq(S2lRn), Lct x E Q

wilth rank Dg(x) - r. Then the.e exiL4t,6 an open ne&ghbc'-hcd c'

x, x C Q, zuch that g(Q x) i.6 an (r,n;q)-manifold.

P R 0 0 F. If r - n, the proof follows from the inverse function

theorem, so we suppose r < n. Since Dg(x) has rank r, there

is an increasing r-tuple X - (i. .. i r) of integers in {1, ...,n

such that Jg (x) # 0, where gA E C q(, r) is the function
if) i

xI. (g (x).... ,g r(x)), x E 0. By the inverse function theorem,

there exists an open neighborhood 0 x C 2 of x such that gX (. )

is open in IR , : g is a homeomorphism of 2 onto

g. ( ) , and gX E Cq(gx(Qx)JR ). Let (J .... )nr) be the

increasing (n-r)-tuple of integers complementary to A in

(1,. ..,n}, and define G: g (Qx) nby

i k k
G (y) := yk, k 1, ... r,

~k~lfor each y 6 g(2x).

G (y) :- g og 0  )(y), k m 1,...,n-r

0A
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Since g o(g ) E cq(g( x)), for k = 1,..,n-r, and g (

is open in Rr, we can apply Lemma [VI.14] to assert that

G(g (2)) is an (r,n;q)-manifold.

We claim that gj Qx = Gog0; once this has been substantiated,

there shall follow g( Gog0(x) = G(gx(0)), and the proof

shall be complete. Suppose, then, that y E nx For k

gik (y) (gxlk(y) (gx)k(y) Gk(g(y)) (Gg x k ()
... 0y)

while, for k - 1,....n-r,

g k(y) - g i(g 0  )Cgx(y) G ogX(y) - (Gox) k(y),

whence it does follow that gj s x Gog 0

[VI.17] P R 0 P 0 S I T I 0 N. Let r,n EI With r < n, and

q C -}uf). Let 2 be non-void and open in ,r. Suppo.e that

g: ? - IRn and

WZ) g: Q - g(2) is a homeomotphi(m,

(,Z- g E c Rn),

and

(Zn) rank Dg(x) - r or eacih x E Q.

Then g(,) Ls an (r,n;q)-manifotd, and g Z5 q-regutaA.

P R 0 0 F. In view of conditions (i)-(iii) on g, the q-regularity

of g will follow as soon as it is known that g() is an
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(r,nzq)-manifold. To prove the latter, choose x E 2. According to

[VI.161, there exists some open neighborhood 2 x C 2 of x such

that g(x ) is an (r,n;q)-manifold. Since g: I I g(2) is a

homeomorphism, g(. x) is relatively open in g(n) and, of course,

contains g(x). Thus, each point of g() possesses a relatively

open neighborhood in g() which is an (r,n;q)-manifold. As we

pointed out in (VI.4.b], this implies that g() itself is an

(r,n;q)-manifold. 0.

As promised, we introduce the idea of a ccotdina.tc Sy.tem in

a manifold.

[VI.18] D E F I N I T I 0 N S. Let M be an (r,n;q)-manifold

(r < n). A non-void relatively open subset U of M is called a

Coo.tdinate patclh on M iff there exists a function h: U -]r

such that

(i) h(U) is open in mr

(ii) h: U - h(U) is a homeomorphism,

(iii) h- e C6(h(U)In),

and

(iv) rank Dh-1 (x) - r for each x E h(U).

Whenever U is a coordinate patch on M, and h: U -IRr satisfies

(i)-(iv), h is called a coo.,ditalte 6unctioit ct U, and the pair

(U,h) is called a coo tdirnate u tem in M. M.
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The inverses of q-regular transformations generate the

coordinate systems in an (r,n;q)-manifold:

[VI.19] P R 0 P 0 S I T I 0 N. Let M be an (r,n;q)-maAfcld.

A non-void 4ubze U C M i6 a cootdinate patch on M i66 U - g(= )

6o -6ome q-teguta, tA fln5o%mtion g: S2 - M, wheLe n i's opcn

in Rr. in the Ctate case, (U,g - ) i6 a coo dtautc 3ystem in M.

P R 0 0 F. If U is a coordinate patch on M, then U h (h(U))

r
for some coordinate function for U. h(U) is open in r, and it

is clear that h h(U) - M is q-regular.

Conversely, suppose U C M is non-void, and there exist an

open set i2 CIRr and a q-regular transformation g: 0 - M such

that U - g(S2). By [VI.15] (or [VI.l0.b], in case r = n),

g: 2 - M is open, and g: Q - g(2) is a homeomorphism. Thus,

U - g(O) is open in M, and it is a simple matter to check that

-l -1
g U -Q - g (U) is a coordinate function for U, i.e., that

(U,g 1 ) is a coordinate system in M. 0.

In addition to providing another criterion which can be used

to identify an appropriate subset of some IRn as a manifold, the

following theorem asserts that any manifold has sufficiently many

coordinate patches to form a covering of the manifold. In fact,

the latter property characterizes the manifolds amongst all subsets

of a given Euclidean space.

[VI.20] T H E 0 R E M. Let r,n EI teLth r < n, and q E { }.
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A non-void 3et M CRn is an (r,n;q)-mafi'lc'd i66 ite ex sts a

fami y o' paits {(U , h) 1E I such that

(i) U C M Zs non-vo,d and tetativety opcn, 6o- each

I I, and {U } e I is a coveAing c6 M,

(ii) 6ot each i E I, h : U *r i a homeomeyhism o6
I -1

U onto an open set in 1r such that h- 1 E

C q(h (U);3Z), n uWth rank Dh_ (x) - r 6ot each

E h (U ).

P R 0 0 F. Suppose first that M is an (r,n;q)-manifold. If r = n,

then {(M,i)}, where i: M -IR n  is the identity on M, fulfills

the requirements of (i) and (ii), so we may suppose r < n. We shall

show that each point of M lies in a coordinate patch on M, i.e.,

whenever x 6 M, there is a coordinate system (U x ,hx) with

x 6 x . The collection {(x,h x)} xe shall then fulfill the require-

ments. Then choose x 6 M. Let Ux CIR and 4 x E CU nr)

be as in Definition [VI.3]. We repeat the construction carried out

at the beginning of the proof of [VI.15): according to the implicit

function theorem, there exist an open neighborhood U0 C U of x~X

in IRn, an increasing r-tuple A - (iI .. ,.ir) of integers in

{1,...,n), an open neighborhood V0 CIr of xx, and a function

0 6 cq(v;M n-r) such that
0

{y 6 U01 "x(y) - 0} - (y E mnI yX E V0 9 Y Ak .(y

k - 1,..
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where (j ... jn-r ) is the increasing (n-r)-tuple complementary

to A in {1,...,n}. Once again, we have W U M {y E U0 j ¢x(y) - 0",

and G(V0) - K)U0, where G: V0 , Rn is defined by

G iy) : ) k, k -

for each E V0.G k(y) :- *k(jr), k-l,.n-

According to Lemma [VI.14], G: V0 - M is a q-regular homeomorphism

of the open set V0 CIR onto the relatively open neighborhood

M U0  of x in M, with G- MU 0 - Rr being just HE (M 0).

Clearly, (MCIU 0, -=I (wu 0)) is then a coordinate system in M,

with x E WU0 . As noted, this implies the necessity of the stated

condition.

To prove the sufficiency (now, r < n), suppose that there

exists {(U ,h)} 1  with properties (i) and (ii). Choose x E M,

then i E I with x E U. Then h (U) is open in IRr, h-l1

h (U) - U is a homeomorphism, with h-l E Cq(h ( U ) n) and

rank Dh-(y) - r for each 9 E h (U ). Proposition [VI.171 allows

us to conclude that U, h- (h (U)) is an (r,n;q)-manifold.

By (i), U is open in M. Thus, each point of M lies in a

relatively open subset of M which is an (r,n;q)-manifold, whence

M itself is an (r,n;q)-manifold (cf., [VI.4.b]). 0.

It is important to point out the necessary relationship

between coordinate systems with "overlapping" coordinate patches.

We shall consider only the case r < n, since the inverse function
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theorem can be used to prove the corresponding statement for r = n.

[VI.21] P R 0 P 0 S I T I 0 N. Let M be an (r,n;q)-manic'Zd,

r < n, and Ul,h 1 ), (U2,h2) cootdinate .y5tems in M with

U I,'U 0 o Dcine
1 2 ~ e-i

012 : hIO(h 2 
1  h2(UI U2 )): h2 (UlI U2) IR r'

Then

(si) an(UdU2) h 0h 2 )  au open in Ir,

-- 1

aand

{iV) h 1 (U Ir,U 2) -12 o(h 2 (UlInU 2)

h-1  h(Ur U2) - h 1 021,

h21 (U 1 U2) 21o (h11 (U1 r ) ),

hi1 h2(U lU2 ) - h11o02
h2 h2 1UIn 2 h1 1 2*

P R 0 0 F. (1) Since U2  is open in M, U IU 2  is open in U1 .

Thus, h1 (U1(U2) is open in lr, since hi: U1 - h1 (U1 ) is a

homeomorphism and h 1(U1) is open in IRr. Similarly, h2(UI1 U2

is open in IRr.
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(ii) This is obvious.

(iii) Let us show that, *12 is q-regular: since we know

that 12 is injective, it suffices to show that each i E h2 (U1 %U2)

has an open neighborhood V. C h2 (UI rU 2 ) such that 12 V E

Cq(V r), with rank Do12 (Q) - r for each E V . Then, choose

E h2 (UnU2). Set x - h2 16). Since 0 2Cx) - h (h2 (x)), we

also have x - IC (i)). Let C n be an open neighborhood ofalo av x- () 12 Ux

x, and 0x E Cq(Ux n - r) as in Definition (VI.31. Let U0 C Ux

be an open neighborhood of x, A - (i1 ,... ,i) an increasing

r-tuple of integers in {l,...,n), V0 CRr an open neighborhood of

X n-r
x , and CEq(V 01R ) such that

U0 - (y E U0 I x(y) - 0}

M {y Cln y XAE VO, y I . (y), k 1 ... ,n-r},

where (Jl ... jn-r) is the increasing (n-r)-tuple complementary to

A in (1,...,n}. We can find an open neighborhood n i C h1 (U1 U2)

of *12 (i) such that h1 (01) C MWUo, and an open neighborhood

S1 C h2 (UI')U 2 ) of i such that h2 1 (n2) C K)Uo, since hl and

h21 are continuous, WflU0  is a neighborhood of x in N, and

x - h21(x)- hl (t12 (i)). We define f: 1m )r, f2: 2 - r by
2 21 2 2

1 - 1

2 o~ 2  2

Just as in the proof of (VI.15], using the auxiliary function
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GE Cq(V 0 Rn) given by (VI.15.3), we can show that h I I l Gcfl

and h21 2 Gof2 ' and so that fl and f2  are q-regular;

the details can be easily supplied, so we omit them here. Using the

inverse function theorem (cf., [VI.10.b]), it follows that fi(.)

is open in r, and f : f( ) -IRr  is q-regular, for i - 1,2.
i* i i

Now, f2(i) A 3h;(k)) ,h(hI( 12(i))) - fi( 12(k)) E f

so fI (l) is an open neighborhood of f2(i), showing that we can

choose an open neighborhood V. C 22 of i such that f2(VX) Cx

f1(S1). Then f1 (f2 (9)) is defined whenever j E Vi, and it is

a simple matter to check that f1 2 (j) = ( for each

?E V. Since f2 and f1
1  are q-regular, we can conclude that

12iV. r cq(v r ) and rank Do 1 2(y) r for each E V.

As noted, this completes the proof that 012 is q-regular. The

proof that *21 is q-regular can be given in a similar manner or

by simply noting that 21 1

(iv) These equalities are easy to check. 0.

[VI.22] R E M A R K. Suppose that M is an (r,n;q)-manifold,

and (U,h) is a coordinate system in M. It is clear that if

C U is open in M, then (U, hi U) is also a coordinate

system in M. Also, whenever 0: h(U) -IR r is q-regular, then

(U, ch) is another coordinate system in M.

We turn next to the definitions, and certain elementary

properties of, classes of smooth functions on a manifold into a

Euclidean space.
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[VI.23] D E F I N I T I 0 N S. Let M be an (r,n;q)-manifold,

mEIN, kEIJ{oa}, and f: M -3Rm.

(U) f E ck(M m) iff the function foh -1 is in

ck (h(U):m) whenever (U,h) is a coordinate system

in M.

(ii) Let f E Ck (MJRm) and x E M. Then we define the

anjk o6 f at x to be rank D(fch- )(h(x)),

where (U,h) is a coordinate system in M with x G U.

Further, we define tie d ii6ttetiat of f at x to

be the linear operator Df(x): TM(x) -m given by

Df(x) :- D(foh )(h(x))o{Dh (h(x))} - I  (i)

where (U,h) is a coordinate system in M with

x E U (recall that we established, in [VI.12], the

notation {Dh- (h(x))}-1: TM(x) -R r for the inverse

of the operator Dh- (h(x)) taking Jr onto T (X),

since h-1: h(U) -* M is q-regular; cf., [VI.11]).

(iii) Let f E Ck(M ftm). We define Jf: M -C 0,-) via

Jf(x) :- jDf(x)T1 (x)A...ADf(x)Tr(x)f

T 1 (x)A...AT r(x)
(2)

for each x E M,

where {T1 (x),...,T (x)} is a basis for T Mx), for

each x E M.
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(iv) f: M -Imm is a k-imbedding iff

(1) f: M - f(M) is a homeomorphism,

(2) f E Ck(M;Im),

and

(3) the rank of f at x is r, for each x E M. N.

[VI.24] R E M A R K S. Maintain the notation of [VI.231.
(a) Suppose that f E Ck((1;]R') and x E M. Let (Ulh 1),

(U 2 ,h 2 ) be coordinate systems in M, with x E U1 9 U2 . Then
21 -1 2

(foh 2 1)(h 2 (y)) - (fohll)O l2(h2(y)), for each y E UlIU 2, with

:12 as in [VI.21]. Since 2E Cq (UfU2)
'1212 2 1Y 2 ''

D(fOh2 1)(h 2 (x)) D(fOhl )(hl(x))OD1 2Ch 2(x)), (1)

since it1 2(h2 x)) - h1 (x). Again by [VI.21], rank D¢1 2(h2 (x)) r,

so we conclude that rank D(foh2 )(h2(x)) - rank D(foh-1 )(hl(x)).

Thus, the 4mik o6 f at x is well-defined in [VI.23.ii].

(b) Continuing the setting introduced in (a), we can write

DO1 2(h 2 (x)) - (Dh (h (x))}- ODh 1 (hl(x))oD,12 (h2(x))

- {Dh 1 (hl(x)))- -oD(h-lo12)(h2W)

-{Dhj 1(h (x)))- - l (hW)
S 1 oDh (h2 (x)),

so (1) gives
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D(foh 1 )(h2 (x))o{Dh 1(h2(x))}-

- D(foh 1 )(hl(x))ODO1 2 (h2Cx))o{Dh2
1 (h2(x))}-

- D(f-lh -(hl(X))O{Dh-l(h 1 (x)) 1,

D~1 )( 1Cx)O 1  -

which shows that Df(x) is well-defined by (VI.23.1). Observe that,

since {Dh (h(x))} takes TM (x) onto IR , it follows from

(VI.23.1) that the rank of f at x is simply equal to rank Df(x).

(c) Let {Ti(x)} i and {T2i(x)} be bases for TM(x)

It is shown in Fleming [15] that there exists a constant a EIR

such that T 21(x)A...AT2r(x) - aT11(x)A...AT lr(W)and

Df(x)T2 1(x)A...ADf(x)T2r (x) - aDf(x)T11 (x)A...ADf(x)T lr(x). From

this, it is clear that Jf(x) is independent of the basis chosen to

compute it by (VI.23.2), hence that Jf is well-defined.

(d) There is a consistency question which should be resolved:

when M is an (n,n;q)-manifold, i.e., a non-void open set in Rn ,

and f r C q(M m), then Jf: M - [0,-) has already been defined,

in [VI.9.i]. It turns out, cf., [VI.28], in'tL, that C q(M;m) =

Cq(M;R m ) in this case, from which it is easy to see that the

definitions [VI.9.i] and [VI.23.iii] are in fact consistent.

(e) Observe that Jf(x) > 0 iff rank Df(x) - r, iff the

rank of f at x is r. For, if Jf(x) > 0, then

Df(x)TI(x)A...ADf(x)T (x) # 0, so {Df(x)T (x)!, 1 is linearly
1 r ii p t

independent, by the properties of the exterior product. Thus,
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rank Df(x) > r. But dim T (x) - r, so we always have rank Df(x) <

r, so equality must hold. Conversely, if rank Df(x) - r, then

Df(x): TM(X) -m is an injection, since dim T Mx) r. The

linear independence of {T (x)}r. then implies the linear
i i-i

independence of {Df(x)T x)}r , so Df(x)T (x)A... ADf(x)T (x) # 0,
i iwl r

and Jf(x) > 0.

f) Let (U,h) be a coordinate system in M. h h(U)

Rn is q-regular, with h -l(h(U))- U C M. From [VI.ll], the collec-

-1 -1 e(r)rtion {h i(h(x)) - Dh (h(x))e i forms a basis for T M(x), for

each x E U. We find, from (VI.23.1), the especially simple form

1 -l Cr) -
Df(x)hT (h(x)) - D(foh-l)(h(x))ei = (foh-l),i(h(x)), (2)

i

for the images of mm of these particular basis vectors, for

f E Cq(Me1 ), i - l,...,r, and x E U. Consequently, we have the

representation

j(foh - 1),(h (x))A . .A(foh - ) r (x(x))l
Jf(x) - IhT(h(x))A...Ah4 (h(x))l , for each x E

valid whenever M is an (r,n;q)-manifold, (U,h) is a coordinate

system in M, and f E ck (Mm). Of course, fh7(h(x))r• ' i-i

is linearly independent, so the denominator in (3) is non-zero,

for each x E U.

[VI.25] P R 0 P 0 S I T I 0 N. Let M be al (r,n;q)-ma-Z~cZd,

and f e Ck (M;um). /hici
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Wi f is Comutinuou.5,;

(ii) Jf 4 Continuous.

P R 0 0 F. i) Let (x n)7 be a sequence in M, converging to

some x E M. Let (U,h) be a coordinate system in M, with x E U.

Then U is a relatively open neighborhood of x in M, so xn E U

for all n greater than some n 0 E]N. We have lrn h(x n =~)

n

and so, since foh - E C(h(U)1Rm),

lim f(x) urn (foh)Ch(Xn)) = (foh )(h(x)) - f(x).
n- n-c

Thus, f is sequentially continuous, hence continuous, on M.

(ii) Choose x0 E V.. Let (U,h) be a coordinate system in

M, with x0 E U. For each x E U, Jf(x) is given by (VI.24.3).
Now, b,(h(x))-is in C(u;Ir), xi- (foh- ),ih(x)) is in

Now xi A..c is hx) sinC
C(UtR ), for i - l,...,r, while (al''''ar) a A r  is

continuous on either ORr)r into IR r or ,m)r  into Mm, asr r'

the case may be, and the norm on any I into [0,ac) is also
p

continuous. Since rank Dh- (h(x)) - r for each x r U,

h-(h(x))A.. .Ah,(h(x)) # 0 for each x E U. These facts, coupled
'1 r

with (VI.24.3), show that Jf is continuous on U, hence, in

particular, at x0. Then Jf is continuous on M. 0.

The following improvement of [VI.25.i] is important.

(VI.261 P R 0 P 0 S I T I 0 N. Let m be an (r,n;q)-mai"jcCd,

and f E Cl(M;m), So,% scme m e IN. Tlzen, Wdihncve I K is a
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compact subset o' M, f{ K i- Lipsc/Litz cc'intiucu, i.e., thete

exi-s a aKf > 0 such thact

lf(Y2)-f(Yl)lm ' aK,f'IY 2-Ylin' fc, y1,y 2 E ()

P R 0 0 F. Select any x E M. As in the proof of Theorem [VI.20],

we can find an open neighborhood UOx of x in IRn and an increasing

r-tuple Xx a(i,...,i) from {1, ... ,n} such that (Wxsk is a

coordinate system in M, where

Wk :W Ox, (2)

AA k x:- X1 M-U O*.3

x( Uo ) x
Thus, kx(W) - H (M-UOx) is an open neighborhood of x xx
-(x) in R - let E denote a positive number such thatx

Br (x x)- C k (Wx), and then let 6 > 0 be such that both
x x xx

Bnx) C U and k (M'Bn (x)) C Br (x X) hold. Note that k
B6  ~ Ox x 6 C X

x x x
is Lipschitz continuous on Wx: indeed, whenever yl,y2 E Wx,

x x

x(2)x(Yl)lr - X(y2)-= x(Yll r < Y2 n (4)

Now, since f E Cl(M;Rm), we know that fok -1 E Cl(k(Wx);Rm).
x

In particular, the partial derivatives of fok are bounded on the
x

compact subset Br (x x)- of k (Wx)
x

Let K be any compact subset of M, and choose a finite

set { Nx C K such that the collection {WB n (x N

£ x i /2 ili
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.N

open subsets of M covers K. Write 6 :- min {x /2 N. Suppose
x i il1

that yl,y 2 E K. Assuming first that Iy2-Ylln > 6, we have

If(y2)-f(yl)Im - (If(y2)-f(yl)Im/IY2-YlIn),IY2-Ylln

(5)
< "2 sup If(y) lm.1y2-Yln

~jE K 2 l~n

in which sup If(y < , since f E C(M;Em), by [VI.25.i].
yE K

Next, assume that 0 < jy2-yl n < 6. Denoting by j an element of

{1,...,N) such that Yl E M)Bn (x ) C W, it is clear that we
. 3 3

also have Y2  n B (x.) C W since ly2-XjI <
x2 EJ -

Yyn+lYl-XjI n < 6+6 /2 < 6 X Moreover, we then have

n X. n x.

x. X.

k (yl), kxCY2 ) E Br (x. 3), since k (M4B (x.)) C Br X
x 23 x x 1 (xj

by the first part of the proof. Consequently, we can apply the mean-

value theorem to write

If(y2)-f(yl)Im Ifok- (k (y ))-fok-l(k (y Wx xI x x I m

SID(fkkI )(I(kx(Y)-kx(Yl))I
m

m r 2/2_•[ {(fok-l) ()) (6)
X 1 z 1(6

"1kxj (Y2 )-kxj (Yi)Ir

SAK,f'IY2-YlIn ,
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having used (4), where z is some point on the line segment joining

k (yI  and k xJ(y 2) (which are distinct, since Y1 # Y2)  and

(m r2'12

A KE : max j max (fk

1< p <N x ) il EMi p

E B C x P)

x2

Ep

In any case, (1) holds with aKf :- max 62  max lf(y)m, AK,f},

as (5) and (6) show. 0.

[VI.27] P R 0 P 0 S I T I 0 N. Let M be an (r,n;q)-maLif'-iZd,

m EIN, and k EINUI{-} with k < q. Let f: M -R m . Then fE

Ck (M;m) i66 thete exizt6 a Samily oS cootdinate zy,tem.s

{U,h )} EI in M such that {UI I 1EI covreu m, and foh 21 E

Ck(h (U)m) ior each 1 E I.

P R 0 0 F. From Definition [VI.23.i] and Theorem [VI.20], the

condition is obviously necessary.

Now, suppose {(UI,hI)}IE I  is a family of coordinate systems

in M possessing the stated properties. Let (U,h) be any coordinate

system in M: we must show that foh - 1 E C k(h(U)R ). Choose

x E h(U), then i E I such that h- M() E U 1. Then U nU 0 0,

open in U, and h(U I U) is an open neighborhood of i in mr.

Set t :- h o(h-
1 1 h(U IlU)). Then *(h(U IU)) C hI (U ), and, just

as in [VI.21], 0 E Cq(h(U I U);Rr). Clearly, (fOh-l) h(U I-) -

(o-l 1 k )
(foh )oo. Since it is known that foh-I E Ck(h (U )Rm) and

1. 1 1_1
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k < q, we conclude that (fOh -1 )I h(U U) E ck(h(U r)nU).F).

Thus, foh - 1  is of class Ck  in a neighborhood of each point of

h(U), so that foh -1 E ck(h(U) m). 0.

[VI.281 R E M A R K. Let Q C] n be non-void and open, i.e., an

(n,n;q)-manifold (for any q EINU{}). The single coordinate system

(Pi) where i: Q -]Rn  is the identity on 2, covers £2.

m k m
Let f: Q -IR. Directly from [VI.27], f E C (£ e) for some

k EIN { ) iff foi 1 E ck(i (Q)Rm ), k.e., iff f E ck(u:e).

Thus Ck(Q2Mm) ck (,Q2m), in this case, for each k EI{-}.

[VI.29] P R 0 P 0 S I T I 0 N. Let M be an (r,n;q)-ma2fcld,

N a (p,m;s)-manvifed, and f E Ck(M Rm), With f(M) C N. Then

(i) dor each x E M, Df(x)T M(x) C T N(f(x));

(iL) if p -r and tJe tank oS f at x E M i r, CA

Jf(x) > o, then Df(x)TM(x) TN(f(x)), and Df(x)

i6 injec-tve.

P R 0 0 F. (i) If p = m, then N is a non-void open set in Rm

and the result is trivially true, since, for x E M, Df(x):

T M(x) _-Rm - TN(f(x)) " Suppose then that p < m. Choose x E M.

Let Uf(x) CIRm be an open neighborhood of f(x) and f(x)

CS(U f(x) 9Rm-p) be as in Definition [VI.3] for the (p,m;s)-

manifold N. Let (U,h) be a coordinate system in M with

x E M. Since f is continuous ([VI.25.i]), f- (Uf(x)) is an open

neighborhood of x in M, while

- II Illl J .
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t (((foh- )(h(y))) f(x)(f(y)) -0 whenever y E Ufl(Uf(x))

Since h(Unf-l (Uf(x))) is an open neighborhood of h(x) in Rr ,

fOh - 1 e ck(h(U);]Rm), and Pf(x) 4 C (U f(x) ;R ,- p)  the composite

function theorem shows that Df(x) (f(x))OD(foh- )(h(x)) is the

zero operator on Ir into JR-p. Thus, for each T E TM(x),

D( f(x) (f(x))oD(foh- )(h(x))o{Dh-l (h(x))}-iT 0,

or

DOf(x)(f(x))ODf(x)T = 0.

Since TN (f(x)) = ker DOf(x)(f(x)) , by [VI.6], we conclude that

Df(x)T E T N(f(x)) for each T E TM(x). This proves (i).

(ii) Now we know that the rank of Df(x): TM(x) -IRm

is r, dim TN(f(x)) - r, and, by (i), Df(x)TM(x) C TN(f(x)), so

we must have equality: Df(x)TM(x) - T N(f(x)). Since dim T MX) = r

and rank Df(x) - r, Df(x) is injective. 0.

It is essential to have a reasonable condition under which

the image of a manifold is also a manifold. More precisely, we have

the following statement.

[VI.30] T H E 0 R E M. Le- M 6e an, (r,n;q)-maatnc'd, m ED,

and k EX{-J1 W4ith k < q. Suppcse Vfat f: M Rm is a

k-iZmbeddAig~. Then
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(i) f(M) is an (r,m;k)-ma~ifoLd;

(ii) 6c each x E M, Df(x): TM(x) m i an injcic

takitg TM(x) onto Tf(M)(f(x));

(i) f-1: f(M) -*Jn  Zs a k-imbedding;

(iv) So,% each x E M, the inverse o6 the bjectc'n

Df(x): T (x) - Tf( f(x)) is given by Df- (f(x));
M f(M)

(vi dao each x E N, Jf- (f(x)) - {Jf(x)} -

P R 0 0 F. (i) We shall use Theorem [VI.20] to show that f(M) is

an (r,m;k)-manifold. Choose a collection of coordinate systems

{(U,h )}1E I  in M such that (U I covers M. Consider the

family of pairs {(U,)} 1E, where UI :- f(U ) and h

(fohl)I . Note that (fohl) takes f(U I) onto hl(U ), and

is a homeomorphism between these two sets, since h,: U, hI (U)

and f: M - f(M) are homeomorphisms. Since U is open in M,I

- f(U1) is open in f(M). Thus, for each i E I, h U -' r
1 1 1

is a homeomorphism of the relatively open subset Ul onto hC01) =

h (U ); the latter is open in Mr, by the properties of h We,. .* e

can also write h - h o(f-1 1 f(U )), for i E I. Clearly, theca lo rt 1 " h

collection {Ui6iei is a covering of f(M).

Now, choose i E I and consider - fOh-l: h (U) -

h (U ) *m. We see immediately that h-l E Ck(h (U )9Rm) , since

f 6 ck(M;Fm) requires thac fo-l C ck (h (U )-Rm). Suppose that
I

j 6 h (UhCU; because the rank of f at hl (x) E M is r,
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we have rank D(foh-)(x) - r, .e., rank Dh-(x) = r.1 *1

The existence of the collection {(U,,h)}Ei with these

properties then shows, via Theorem [VI.20], that f(M) is an

(r,m;k)-manifold; i) has been proven.

It is clear that we have also shown that whenever {CU h )1

is a family of coordinate systems in M, with {U I covering

M, then {(f(U ),(foh )- 1 is a collection of coordinate systems

in f(M) such that {f(U ) covers f(M).

(ii) Now, we know that f(M) is an (r,m;k)-manifold. Since

f 6 C k(MfR m ) and the rank of f at each x E M is r, (ii)

follows from (VI.29.iij.

(iii) We already know that f- f(M) - f- (f(M)) - M is a

homeomorphism. To show that f-1 r Ck(f(M);Rn), select a family of

coordinate systems in M, {(U ,h )} el, such that {U I  covers

M. Then (f(CU),Cfch I I is a covering collection of

coordinate systems for f(M). According to [VI.27], the inclusion

f-6 Ck(f(M)R n) shall follow once it has been shown that

f-1o(fch 1  k ) -C(foh 1)- (f(U ));R n ) for each i E I. But the

latter is clear, from f- o(fOh ) - h , (fCh1 )lfCU )) h (U

h-  C q C(hI(UI ).n), for each 1 I, and k _< q. Finally, we

must verify that the rank of f at each point of f(M) is r.

For this, choose x E f(M), and let i E I be such that x E f(U ),

where ((Wt,h )} I  is as before. Then (MU ),(f hl)-) is a

ih 61
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coordinate system in f(M) with x r= f(Ui) so it suffices to show

that D(f- o(foh1 ))((foh- )- (x)) - Dh- ((foh- )- (x)) has rank

r. But (foh- )- Wx E h (U ),while Dh- (jr) has rank r for
I I I

each E h I(U ).Thus, f 1  is a k-imbedding.

(iv) Choose x E M. We know that Df(x) is an injection

taking T M(x) onto T f(M) (f(x)), and (because of (iii) and

[Vl.29.ii]) Df 1l (f(x)) is an injection of T f(M)(fMx)) onto

T M x). Consequently, It suffices, for the proof of (iv), to show

-1that, say, Df (f(x))ODf(x) - i T C x)9 the identity operator on

T (x). Let (U,h) be a coordinate system in M, wi.h x 6 U;

(f(U),CfOh- )- ) is a coordinate system in f(M), with f(x) E f(U).

According to the definition in [VI.23.ii], we have, on T Wx)
M

using (fob -1 )-1 -ho(f- 1 f(u)),

Df- (f(x))oDf(x)

- D(fl o(foh -1))((foh -1) -1(f(x)))c(D(foh -1)((foh ) fx)

oD(foh1 )Ch(x))o{Dh- Ch(x))I1

a Dh- (h~x))O{D(foh- )(h(x))}- OD(fOh- )(h(x))O{Dh- (h(x))}-

- iT (x)'

as required.

THx. (v) Choose x 6 M. Let ITj x),...,T r(x)}I be a basis for

T x.By (iv), Df'. (f(x))ODfix)T I(x) T T1 (x), for

whenc e
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lDf(x)T (x)A... ADf(x)T r(x)
IT z(x)^ .. AT .^r(X W -

Df-1 (f(x))ODf(x)T1(x)A...ADf-l(f(x))ODf(x)Tr (x)]

lDf(x)T 1-(X)A.. ADf (x)T r (x) I'.

But Df(x) is an injection carrying TM(X) onto Tf(M)(f(x)), so

{Df(x)TI(x),...,Df(x)Tr (x) is a basis for Tf(M) (f(x)) (which also

shows that IDf(x)T1(x)A...ADf(x)T (x)I # 0). In view of the

definition in [VI.23.iii], the preceding equality is just

Jf(x).Jf-(f(x)) = 1. 0.

[VI.31] R E M A R K. Maintain the setting and notation of

(VI.30]. Let x E M, and (U,h) be a coordinate system in M,

with x E U. Since {h (h(x))} r. forms a basis for T (x) it
S1 1 M

is clear that {(foh-),i(h(x)) r. forms a basis for TfM x)),
-i

since Df(x)h,'(h(x)) - (foh ).i(h(x)), for i - 1,...,r; cf.,
i

[VI.24.f]. Also, Jf(x) can be computed from (VI.24.3).

We shall prepare a statement concerning composite functions

in a somewhat restricted setting; as it turns out, this is all that

we require.

[VI.32] P R 0 P 0 S I T I 0 N. Let M be an (r,n;q)-,1,;i Zd,

9. kf: M -mm a q-imbedding, and g - C (f(M);Rk), Lvhee E INU,,

9 < q. Thei

I. k
(A:I gCf E C (H;IR )
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(ii) D(gof)(x) - Dg(f(x))ODf(x), fo. each x e m;

I[-Z) J(gof)(x) - Jg(f(x))oJf(x), 6c each x e M;

(iv) i6 g iz an £-imbedding, then gof is i

1-imbedding.

P R 0 0 F. Note that f(M) is an (r,m;q)-manifold (and, if g

is an £-imbedding, then g(f(M)) is an (r,k;Z)-manifold), by

[VI.30.i].

(i) Let (U,h) be a coordinate system in M. Setting =

f(U) and h :- (foh-l )-I  ho(f-i1 f(U)), it is easy to see, as in

the proof of [VI.30.i), that (U,h) is a coordinate system in

f(M), since f is a Q-imbedding of M into m. We know that

g G C£(f(M);hk), sR), 4.e., (gof)oh - •

CI(h(U)R mk) (obviously, hU) - h(U)). Thus, gof E Cz(M R ).

(ii) Let x E M. Choose any coordinate system (U,h) in

M such that x E U. Recalling [VI.23.iil], we have

D(gof)(x) :- D(gofoh )(h(x))O{Dh (h(x))} l , (1)

and

Df(x) :a D(foh )(h(x))o{Dh (h(x)) -  (2)

Define the coordinate system (U,h) in M as in the proof of (i);

then f(x) • U, and so

-- I I I I . . . . . .F. - - . . . . . . . I , i , . . . . . . . . . .
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Dg(f(x)) :- D(gCh - )(h (f~x))){Dh
-l hf(x))) -

- D(gofoh - )(h(x))o{D(fCh - l )(h(x))} -

(according to (VI.12], {Dh- (h(x))1 -I denotes the inverse of

Dh- (h(x)) taking ]Rr onto T (x), while {D(foh- )(h(x)) - I

denotes the inverse of D(fOh - l )(h(x)) taking IRr onto T f(M) (f(x))).

Now, the equality D(gof)(x) - Dg(f(x))oDf(x) clearly follows from

(1), (2), and (3).

(iii) Let x E M; choose any basis {T x)} r for
i il

TM(x). Then {Df(x)Tix))rl is a basis for T Mf(x)) (from
Cx) Then f CM)

[VI.30.ii]), so the definition [VI.23.iiiJ, with (ii), shows

that

ID(gof)(x)Tl(x)A... AD(gof)(x)Tr (x)J(gof)(x) := ITI(x)A . . . AT r W)  '

IDg(f(x))Df(x)TI (x)A... ADg(f(x))Df(x)T rX) I
lDf(X)T 1(x)A...ADf(x)Tr x)1

jDf(x)T 1 (x)A.. ADf(x)Tr x)

IT(x)A ...AT rx) I

- Jg(f(x)).Jf(x).

Thus, (iii) is proven.

(iv) Now, suppose that g is known to be an R-imbedding.

Then f: M - f(M) and g: f(M) g(f(M)) are homeomorphisms, so

gof: M g(f(M)) is a homeomorphism as well. We have already seen
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that gof E C(M k). Finally, since Jg > 0 on f(M) and Jf > 0

on M, (iii) shows that J(gof) > 0 on M, whence the rank of

gof at x is r, for each x E M (cf., [VI.24.e]). These facts

show that gof is an 1-imbedding. 0.

The following geometric fact is in accord with one's

intuition.

[VI.33] P R 0 P 0 S I T I 0 N. Let M be an (r,n;q)-manfZcZd

which Zs clc4ed in Let x e ]n. Then theAe exists at lem

one z E M do. dhlchx

r(zx ) dist (x,M) := inf (rx(Z)I z E MI. (1)

Afoeve,%, td2eneveA z r m tif %ie (1), then
x

(X-Z )  1; (Zx) (2)

P R 0 0 F. The first statement is, of course, well known (and

holds for any closed subset of ]n): we can find a sequence in M,

(zi)i, such that rx(z ) - dist (x,M). It is easy to see that

(z ) is Cauchy in IRn, hence converges to some z ,x which must

then be in the closed set M. Finally, rx(Zx) - lim r (z )
xxi

dist (x,M).

Now, suppose z x r M and (1) holds. Consider any z E M.

We compute

i -l 2 x I-Cz -Zz )12  jxz 1+IZ-Z I22(xz )(z-z
n x n xn x x



-'44-

giving, since IX-Zxln x-ZIn, by (1),
12 l,,1 l~ 2 z zx 2.

2(x-zx)@(z-zx) - X n  n I -xn -< (3)

Now, choose any a E TM (zx). By Definition [VI.5], there exists a

6 > 0 and a function p 6 C ((-6,6)R ) such that V(s) E M if

Isl < 6, *(0) - zx, and ''(0) - a. Whenever 0 < s < 6, (3)

shows that

2(x-z )S(,(s)-(O)) < { (s)-4(O)12

2 (X-Zx) ((-S)- (0)) - (-s) -(0) ,29
xn

so

2Cx-z )'fCS)-O(0)} 14 S)( 1(0)1 'p s) - () ~ (4)

and

- > -s)(sq'(0) (5)

Letting s 0 in (4) and (5) results in 0 < 2 ,-z )ea < 0. Thus,

(x-zx) is in the orthogonal complement of T (Z ), £.(., is in

N(Z). 0.
M x

There are, of course, standard techniques for constructing

extensions to Mn for smooth functions on an (n-l,n;q)-manifold.

We have need of a special result of this sort. It is essentially no

more work to consider manifolds of lower dimension, as well.

[VI.34] P R 0 P 0 S I T I 0 N. Let M be an (r,n;l)-man'cjCd,
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r < n, and g E CI (M;Rm), with sup g(Y) I < c. Le- r be a

non-void compact zub.set 0f M. Then thete exists a E ORn ;Rm

auch that j r = g& r and

max I (y)m < sup Ig(y)Im. (1)
y IE In y E M

P R 0 0 F. Choose x E M. Just as in the proof of Theorem [VI.20,

we can find an increasing r-tuple of integers in {l,...,n}, X(x),

and an open neighborhood U x of x in In such that ( -X(x)

MIUV X ) is a coordinate system in M, with x E W4U . Then
_A(x)( Ux _A(x)r

M is an open neighborhood of x(x) (x) in r

(l~fr :-~x Xx) i

so we can choose px > 0 such that Br (CX( )) C E_(x)CMnT) as

well as Bn (x) C U x. Now, whenever y E Bn (x),
P xP
x x

-E~x )(x) (x) X(x) (Y).x(x)j Yl
(-= W1 r = ) )_-X r y-xln  Ox,

so E (x)(y) E B r (xA(x)). Therefore, we can define gx: Bn x)
Px px

Rm according to

Xx W -10=x~x) n ()
go(Y) --lo -()(y), for each y E B (x). (2)

x

Now, g r C I(M; Rm), so go(EH(X), WUx)-I E Ca(5(x) (MU x) Rm),

whence g E CI(B n x) Rm). Since MBn (X) C WUx, directly from

(2) we have

gx(y) - g(y) for each y E I"lB nx), (3)

4



-46-

i.e., g is an extension of gI MB n (x) to Bn (x). Obviously,
x x

(2) also shows that

sup Igx(y)I _ sup Ig(y)Im< sup )g(y)I .
n y E MU y e M
y x

N
Now, choose a finite set {x i C r such that the collectionNi 

i-i

{Bn (x )}N provides a covering of r. For brevity, writex i
0 :IBn (x.) and g :- g for each i E {1,... ,N). For

Ix . 1 i '

1

convenience, we may, and shall, suppose that the covering {)i N
Vi=l-

Nis minimal, i.e., no proper sub-collection of {C%}NI provides a

cover for r, since it is clear that we can extract such a minimal

subcover from the original cover, if the latter does not already

possess this property. Thus, for each i E {1,...,N}, 0i' # r ,

and there exists some zi E 0i)r such that z EC if j E (1,....N}
Si j

and j # i. Now, let T be a locally finite C -partition of unity

for UN 0 subordinate to {0N (cf., Lemma [VI.491, in6ta).fo -i 0i' iuodnaet {i-l.

Thus,

(i) C C;kn),

(i) 0 < 0 < 1, for each * T ',

(iii) for each T G ', there exists i G {i ... ,N} with

supp t C 0

(iv) whenever K C UN.1 0 is compact, there exists an open
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set W C UN 0. such that K C W and all but a

finite number of elements of Y vanish in W,

and

(v) p(x) 1 for each x E iN 0

Set

{p r 'Y1 'P(r) # {0OD;

since r is a non-void compact subset of UN 0., properties (iv)

and (v) show that Yr is non-void and finite, and

i(x) - (x) - 1 for each x E 7. (5)
" r

Define

:= { Er supp C 0

j - { tp C rl0spMU: }' for j -2 2.... N.

Obviously, the collection {i}.} is pairwise disjoint, and we have
1 ha

N 'i YC T But if ip E Yr' there exists a smallest integer in

{l, .. ..N}, j, such that supp 0 C 0j , and it is clear that we

must have, therefore, ip E T' Consequently, we conclude that

Tr -P Y (6)r i-1 i

It is also easy to see that, if i E {I,...,N}, T # . For,

recalling the properties of zi E 0 1lr, introduced previously, we
ir
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can choose Ezi T r such that 1zi) # 0, by (5); if j E

{1,...,N} and j 0 i, then z. E0 , so supp z cannot lie

in 0. Thus, supp 1zi C 0i , and zi E i'. verifying our claim.

Each Ti is clearly finite. Defining

I p for each i E {1,...,N}, (7)

it is easy to see that E C=R n ) and supp i C 0 for each i,

while

N N
( icx) - (x) =(x) 1 for x E r, (8)

i-I iui E

by (5) and the properties proven for {fiN .  Next, for each
i i i'

i 6 {1,...,N}, define gi IRn ...m by

i xgi W) if x E 0i,

ii(x) :- (9)

if x r 0'

Since g 6 c Cl(0 Em) i ORn), and supp i C 0i, we must

have ii e C0n with supp j. C 0i, for each i E {i ....N).

Finally, set

N
N - (10)

im 1

we claim that g has each of the desired properties. The inclusion
1ln

SC0 OR nRm) is plain enough. To see that g is an extension of

g, observe first that
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gi(x) 4i(x).g(x) for each x E r and i G {i,.... ,N. (1I)

Indeed, suppose that i E {1,...,N} and x E r: if x E 0', then
1

ii W - 0 and -x) 0, while if x E 0, then (3) shows that

i (x).g(x) g Pi(x)-i x) :- i(x). Thus, (11) is true. But then,

whenever x r F, in view of (8) we can write

NN
g(x) :- i i(x) = i x) g(x) - g(x),

i-i 1)i

whence g! r - gi r. Finally, to verify inequality (1), let

x EIRn: if x E 'i~l UN , then, using (4),

N

ig(x)i I iix

I 'Pi W-giW

sup Ig(y)Im.'P(x
y E M {il xEC I 1

i
N

< sup Ig(Y)!m I (x)

y 6 M{[ e }

.1 sup 1~)m

on the other hand, if x C (LIN 0 ) 0 !, then
i-l i i=. i

N
i(x) su (Y - 0.

Thus, (1) holds.

The development to this point provides sufficient preparation
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for the definition and study of the Lebesgue measure and integral on

a manifold in some Euclidean space. Fleming [15] gives some

discussion of these topics, but his presentation is inadequate for

our purposes: a precise formulation is required here in order to meet

the exigencies of a number of lines of reasoning in Parts I-V.

We begin by citing certain measure-theoretic facts, the

principal references being Hewitt and Stromberg [20], and Rudin [46].

The definition of a common measure-theoretic term will be set down

here only if these sources employ distinct definitions for that

term; otherwise, such basic terms will be used without preliminary

comment. In general, we shall adhere to the definitions of Hewitt

and Stromberg [20].

[VI.35] D E F I N I T I 0 N. Let X be a locally compact

Hausdorff space, and denote the a-algebra of Borel sets of X by

8(X). Let P be a measure defined on a a-algebra A of subsets

of X, such that B(X) C A. Then u is called a tegutat meo.,%u iff

(i) u(K) < -, for each compact K C X,

(ii) u(A) * inf {u(U)I U is open in X, A C U}, for

each A E A,

and

(iii) i(U) * sup {w(K)l K is compact in X, K C Al,

for each open set U C X. U.
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It turns out that a regular measure possesses a property

stronger than [VI.35.iii].

[VI.36] P R O P O S I T IO N. Let w be a 4egu meau%

defined on a a-atgeb.%a A oj subaeat o6 a tocally compact

Hau.dor'%6 space x (.6o (x) C A). Then

-(A) - sup {u(K)I K i6 compact in X, K C A},

6o't each A E A which Z6 o-6iZtte w.h %upcct to u.

P R 00 F. Cf., Hewitt and Stromberg [20]. 0.

[VI.37] R E C A P I T U L A T I O N: T H E E X P L I C I T

CONSTRUCTION OF A REPRESENTING

MEASURE CORRESPONDING TO A GIVEN

R A D O N M E A S U R E. Let X be a locally compact Hausdorff

space. Let C0(X) denote the complex linear space composed of all

complex-valued continuous functions of compact support on X.

Recall that a Radoni meazme, or nonnegat&ve £Zneavt 6nctionat. on

X is a linear functional 1: C0 (X) 1K such that 1(f) > 0

whenever f e C0(X) and f > 0. Let I be a Radon measure on X.

Hewitt and Stromberg [20] contains the explicit construction, from

1, of a a-algebra M of subsets of X, and a measure i on

M such that
1

() 1(f) - f di, for each f E C (X),

X
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(ii) B(X) C At,

(iii) i is regular,

(iv) (X,MMO) is a complete measure space,

(v) if A C X, then A EM iff AnK E M for each

compact K C X,

and

(vi) if .i is any regular measure on A{ such that1

1(f) f f du for each f E Co(X), then W =

There are certain other technical results of the construction, which

we shall not give here; these results shall be used implicitly, in

the sense that they are used to prove other statements which we shall

later provide explicitly. In all such cases, we shall refer to the

work of Hewitt and Stromberg for the proofs.

In order to have a precise nomenclature, we shall call any

measure generated from a nonnegative linear functional on C0(M)

where X is a locally compact Hausdorff space, by the particular

construction cited above, a mneazue in the 6ene o6 [Hewitt and

Stromberg, §91.

Of course, the well-known representation theorem of F.

Riesz is an imediate consequence of the facts given above. Since

we shall need a number of other properties of the representing

measure whose existence is the assertion of the Riesz theorem, we
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have chosen the more detailed presentation of Hewitt and Stromberg

as our primary source, rather than merely stating Riesz' theorem.

It is important to note that in our terminology, the usual

Lebesgue measure on IR n (n EIN) is a measure in the sense of

[Hewitt and Stromberg, §9]. Indeed, one of the standard ways of

defining Lebesgue measure is via the Riemann integral on COORn),

clearly .i Radon measure. We shall denote Lebesgue measure on mRn

by A n (so that Al denotes the a-algebra of Lebesgue-measurable
n

subsets of kn).

We next recount some facts concerning another familiar method

for constructing measures.

[VI.381 P R 0 P 0 S I T I 0 N. Let (X,A,p) be a mea~&Lc Zpacc,

and W: X * [0,-] an A-mea.zw'abte 6unctcrn. Dc6ine p: A [O,co]

by

U1(A) : 1f d A = - du, got each AE A. (i)

A X

Then

() a i a mea.6 UAe on A, and

f f dui - { fq; dij, (2)

X X

got each A-mea.wuabLc 6unctiizn f: X [0,®].

ii4) When.eveA A E A and w (A) - 0, thCn I (A) - 0.

I'
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16 > 0, then u(A) = 0 i6 A E A witht (A) ,

o. Thws, if ;p > 0, (x, A,u) ii compl-ete iff

(X,A,p) i. compZete.

(iii) 76 f Z6 defined p-a.e. on x and is A-measwtabLc,

then f E L1(X,A,.) iff f p e L1 (X,A,u); in eithet

ca.5e, (Z) hoLd.s.

(iv) Suppo6e V > 0. Then f E L1 (x,A, 6) if f e

L (X,A.j); in either case, (21 hold6.

(v) Suppo.6e that

(1) X i6 a tocatty2 compact a-compact Hauzdo-f66

6pace wtth B(X) C A,

(2) j ia eguot,

and
loc ,

(3 ip E L1  (X,A,11), i.e., E 1 (x'A'w)

each compact K C X.

Then w iz t egu~lt and a-Sinite.

P R 0 0 F. (i) Cf., Rudin [461, Theorem 1.29.

(ii) The first statement is obvious. Suppose > > 0,

A E A, and w (A) - 0. Then, since =A > 0, -A4  must vanish

u-a.e. on X. Since i > 0, -A a 0 p-a.e. on X, i.e., w(A) -

0, and the second statement is proven. For the third, let 4 > 0

and (X,A,w) be complete. Suppose A E A, w 4(A) - 0, and B C A.

!4
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Then v(A) - 0, by what was just proven, so B E A, since (X,A,-,)

is complete. Thus, (X,A,l ) is complete. The proof of the

converse is just as simple (and goes through even if t is only

nonnegative).

(iii) We may suppose t-hat f is defined on X and is A-

measurable. Then f, is A-measurable on X. From (2),

f jff dw " . f IffiP dp, so f jff du < iff f If"i du <
X X X X

and the first statement of (iii) follows. If, say, f4 E L1 (XA,".),

the equality f f dPi " ff du follows from (i) and the definition
x xX X t

of the integral of a complex-valued function in terms of integrals of

nonnegative functions.

(iv) Observe that, since l > 0, a function f is defined

U -a.e. on X iff it is defined u-a.e. on X, and is A-measur-

able iff fp is A-measurable (if f;P is A-measurable, the
1

equality f - - fO shows that f is A-measurable). The proof of

(iv) can now be completed by using reasoning similar to that employed

in the proof of (iii).

(v) In passing, note that W is a-finite under the hypo-

theses given, since u(K) < - for each compact K C X, and X is

the union of a countable family of compact sets.

For any compact K C X, we have L (K) K dw <x
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since K E L1(X,A,P). This shows at once that u fulfills

requirement [VI.35.i] and that i is a-finite, since X is

a-compact.

We must show that, whenever A E A,

(A) - inf {v 4V)I V is open in X, A C V}; (3)

we know that this holds with V replacing U Suppose first that

A Is compact. Let (I ) be a sequence of open sets in X with
n I

A C n  for each n EIN and lim iCUn) - w(A). Since A- is
nn

compact and X is a locally compact Hausdorff space, we know that

there exists an open set U0 C X such that A C U0  and U0 is

compact (cf., e.g., Hewitt and Stromberg [20], Theorem (6.79)), so

that, replacing each 6n by Un 'U09 if necessary, we may suppose

that Un  is compact, for each n EI. Setting Un :- r
n n

n Jl n

for each n E1N, we obtain a sequence (Un)T of open sets in

X such that A CUn+1 C Un  and Un is compact, for each n E2;

since 0 < (U n)-u(A) < u( n)-u(A), n EG), it is clear that

u(Un ) + u(A). The fact that (Un)7 is decreasing, with o(UI) <
n n

gives w( rI Un) - lim i(U). Thus, setting A0 :- U,
n n

we have u(A0) - u(A), and A C A0  Consequently, F -
0 " A 0 A

p-a.e. on X. For, A0-=  is non-zero only on the set A0'-A

while u(Ao)A') - (A0 )-t(Ao()A) a u(A0 )-w(A) - 0. It is easy to

show that the sequence (BU) is non-increasing, and converges
n
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pointwise on X to RA0. Thus, since p> 0, (-U w) is non-
n

decreasing, non-positive, and converges pointwise to -_Ao .
P0

Further, f UI' dw.< -, since U is compact. Using B. Levi's

X

theorem (Hewitt and Stromberg [20], Theorem (12.22)) to justify the

second equality, we can then write

lim W Un - lim f rn di

ff =r
-f lim £U d ii

n-
m  n

-p du
A 0X

" A4 dw + f (A0 A ) d.

X X

f = 4
x

- u, (A).

I',,

This clearly suffices to prove that (3) is true in this case, in

which A 6 A, A- compact.

To prove (3) in the general case, first note that there exists

a collection {Fn} of pairwise disjoint relatively compact sets
nl

in A such that X U1 F: simply choose a family {F n

of compact subsets of X such that X - U1 Fn (X is a-compact),

and set F i F F '(Unll F for n - 2,3,...; it is
n n j.1 j
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routine to show that {F ) possesses the requisite properties.

Now, choose A e A. Clearly, {AF)F is a collection of pairwise
nl1

disjoint relatively compact sets in A, with U= U (AfFn).

Let c > 0. By what was just proven, we can select, for each

n EIN, an open set U C X such that APF C U andEfn n En

14 (Ucn) <i (AfFn)+(c/2n). Let U := U U U is open,
* c p4 n U1  Ucn U

contains A, and we find that

1(U ) - (U Un)
C ~ 1 En

< (Ar) )+€
1~ cr

- 'P (A)+c,

since we know that U is a measure on A. The desired equality (3)

is an immediate consequence of this reasoning.

Finally, let U be an open subset of X. ie must show that

-(U) = sup {U (K)I K compact in X, K C U}. (4)

Once again, we already know that (4) holds with u replacing w.,

so we can find a sequence (Kn)I of compact subsets of X such

that Kn C U for each n, and lim w(Kn ) n u(U). Setting
a n

Kn :w U K for each n E , we find that K is compact,n jl J' n

Kn C Kn+ 1 C U, and 1(K ) * u(U). Further, with U0 :- U' Kn, we



-59-

have (U - lm uCK) = ij(U), and U0 C U. Just as before,
0 ~ n0
n

it is shown that pU0  - on X, whence (U0) 1 w(U).

Now, clearly, ( JK i) is a nondecreasing sequence of nonnegative
n

functions, converging pointwise on X to = . Once again usingU0

B. Levi's theorem (or Lebesgue's monotone convergence theorem, cf.,

Rudin [46], §1.26) to justify the second equality,

lir P (K)= lim I P d
n n f= n

X

- f Uo
X

= u (U);

the required equality (4) follows directly.

Thus, u is regular. 0.

We should note that the regularity assertion of [VI.38.v]

appears as an exercise in Hewitt and Stromberg [20].

Still another method for constructing a measure, of which

we shall also make Vse presently, appears in Hewitt and Stromberg

[20] (cf., S(12.45)); we describe it next.

(VI.39] C O N S T R U C T I O N: T H E I M A G E O F A

MEASURE SPACE UNDER A CO NT I NUO U S
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M A P P I N G. Let X and Y be locally compact Hausdorff

spaces, and 0: X - Y a continuous surjection. Let W be a

measure on a o-algebra MI of subsets of X in the sense of

(Hewitt and Stromberg, §9]. Suppose that either (i) 0- (K) is

compact in X whenever K is compact in Y or (ii) (X,M ,l)

is a finite measure space. Under either hypothesis, foo E L(X,, ,.)

for each f e C0 (Y). For, if (i) should hold, fc E C0 (X), while

fo e /L(CX,1 ,u) if u(X) < -, as in (ii), since fo is bounded

and continuous on X. Consequently, the map f . j foe di is a

x

Radon measure on C0(Y) , with which there is associated the measure

U 0 on a a-algebra M€ of subsets of Y as in (Hewitt and

Stromberg, §9], such that f foo dM J f dij 0 for each f E C0 (Y).

x Y

This measure space (Y, A ,1) is called the imagc ef (XM ,)

undeA the coittinuo s mapping *.

(VI.40] P R 0 P 0 S I T I 0 N. Maintain the .6etting and icta/tica

o [VI. 391.

W Whenever B E A , then ¢-(B) G At. Thuz,

go¢ on X i6 M -meawurabee whenevet g or Y iz

At -meazwuabee.

(ii) Fo't each a-6iZltC B E M, we have

U (B) - U(%-(B)) - f -BO¢ dw.

x
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(iZi) 76 g E L (YM ,u,), then go€ E (X

and

f g d = f go du.

Y x

P R 0 0 F. Cf., Hewitt and Stromberg [20], Theorem (12.46). 0.

We shall return shortly, in [VI.42], infra, to make further

observations concerning continuous images of measures.

The following technical facts shall be called upon later.

(VI.41] P R 0 P 0 S I T I 0 N. Let x be a ocaly compact

Hau.6do,%6f 6pace. Suppc.e (x,AI u) and (xM v) a/e mea,3L-te

zpacei Wi1th B(X) C f,,I , and u and v ate reguw. Sup)-.csc

6W'Lthe% thtt

I f di = f f dv, for each f E C0 (X) wLth f > 0. (i)
x x

Then

W.) p(E) - v(E) dor each E E M rIM

Now, in addition, azzunc that (x,M Mk ) and (x,M ,v) ate comrtcte,

tvith AU and M each pc'e5ssngn the propetty o6 [VI.37.v], U.e.,

i6 E C X, then E E M (M ) i66 E-K E Id W ) 6or cach compact

K C x. Then, at so,

(i) Mu = Id, M o the measute space. (x, MU) and

.. . .m . . . ... . , . . . . •
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(XM, v a) e ideittcat.

P R 0 0 F. i) This is Theorem (12.41) of Hewitt and Stromberg [20].

Note that this statement implies [VI.37.vi].

(ii) We shall provide a proof of this statement along the

lines of the proof given for Theorem (12.42) of Hewitt and Stromberg

[20]. First, let E E M , with u(E) < -. Since w is regular,

there can be found, using [VI.36], an increasing sequence (K )

of compact sets, and, using (VI.35.ii], a decreasing sequence

(U )j of open sets such that Kn C E C U for each n,

Ij(Kn ) t u(E), and l(Un) +4 (E). Since ui(E) < , we may suppose

that P(U < Co. Set A :-U CO K and B :r )1  U . Then A,B E
1 n  n

B(X), A C E C B, and u(A) - lim ij(Kn) - i(E) - lim ij(Un) -n- c n nn- c

1-(B). Thus, u(BnA') - i(B)-w(B"A) - i(B)-jj(A) - 0. Since, by (i),

u - v on 5(X), and B'A' E B(X), we have also v(B'A') - 0.

Now, write

E - (EIA)U(ErA')

- AU(Er)A')

- AU{Enf (AIB)U(A'rB') I}

- AU{EI1(A', B)}.

But (X,,{) is complete, v(A'"'B) - 0, and E-(A" B) C A"B,

whence it follows that E"(A"'B) E M . Since A E .t we concludeV V

that E E A .

Thus, whenever E EM and w (E) < ®, we have E .
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Switching the roles of ; and v in the preceding argument shows

that, whenever E E Al and v(E) < o, there follows E E AlV

Next, consider any E E M P if K is compact in X, then

E'K E M and i(ErK) < - (since u is regular), so EK E M,

by the result already obtained. Since l has the property ofV

[VI.37.v], we must have E E M . Thus, Al C M . Switching the

roles of V and v in this argument secures the reversed inclusion,

Al c f. 0.

We next study the continuous image of a measure under a

homeomorphism.

(VI.42] PROPOSITION. Let x and Y be /ocat/y compact

Hauwdorff space, and *: X - Y a homeomorphtim. Le-t (x, M ,U)

be a measure space in Vie 6ense o6 [HexiU and S~tombe.tg, 99], and

(YM , its image nd' o: c6., [vI.39]. Then

U) (X,{ ,.Mu) is the image o6 (YAf , ) undeA -;
UUOU

(~~~LZ)~~ a6b&~ B ~ y Z6 iZn Al -l7(B) ;

(iii) a comptex function g on Y iA M -meautab~e

i66 g *, on X Zs M -measuwabte;

(iv) a 6unction g (mere p'tec. .ty, an equivateiice c a.

c' 6uwction whose membe., ate pai ui5e equaz 1.a.C.

on Y) is in L1(YAI ,U ) i6 goo E L (X );

in either.- case, we have
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J g = gO du. (1)

y x

P R 0 0 F. Obviously, P is well-defined, for 0 is a continuous

surJection, and ¢-I(K) is compact in X whenever K C Y is

compact.

(i) Since * is a homeomorphism, it is clear that the image

(1) -l of P under - is well-defined; writing v :- (I )€-',

we have the measure space (X,'1 ,v) constructed from (YM , 9)

and as in [VI.39] (note that i is a measure in the sense

of [Hewitt and Stromberg, §9], as is v). We have, by the manner in

which u and v are constructed, f f do i fo d for each
Y X

f E C0(Y), and j g d- goo-i di for each g E C 0(X). Now,

if g E C0 (X), then go€- G C0(Y), so

g dv g¢- dw" goo-i00 d" g dw.

x Y x X

Consequently, in view of the properties listed in [VI.37], which

are possessed by p and v, all hypotheses of [VI.41] are fulfilled,

and we can assert that t - AV , with U - v on l , u i.., that

-V.

(ii) Let B C Y. From [VI.40.i], the inclusion B E M

implies the inclusion *-(B) E M . Now, suppose -I (B) E M.

Since M. -P , v ()-i0 1' we can again apply [VI.40.i] (for
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and ) to conclude that B = (0-)-C( -(B)) G?.

(iii) Let U CR be open. By (ii), g- (U) E A iff

(goo)-l (U) - o- (g-l (U)) E M . Statement (iii) follows from this

observation.

(iv) Applying [VI.40.iii], we can assert that, if g E

L1YMAI~ then goo E L (X,Af g1) with ffd4 = go d4.the 1IXA with . .
Y x

Conversely, suppose g is defined u -a.c, on Y (whence it is easy

to see, from [VI.40.ii], that gc is defined -a.e. on X), with

goo E LI(X,AI ,1). Then, by (i), go E L1 (X,'M,v), V :1 ( )

so we can apply [VI.40.iii once again (for v an 0 ), finding

that g - go~os -I 
G L(Y, 911 and goo dw - good -

0x x
Sgooo- 1 dpo - fg dwo. 0.

Y Y

[VI.43] R E M A R K S. We recall here certain facts concerning

the measure space generated by restricting a measure to one of its

measurable sets. Let (X,A,p) be a measure space, and choose

E E A. Set AE :- {A E Al A C E), then uE :- ul AE. It is easy

to show that A is a a-algebra of subsets of E and that w4E

is a measure on AE, so there results the measure space (E,AE,PWE).

Whenever f on X is A-measurable, then fi E is A E-measurable;

whenever f f dw - f du is defined, then J (fI E) diE

E X E

is defined, and these integrals are equal. If (X,A,u) is complete,

then (E,AE,UE) is complete. The proofs of these statements are

'.°'. ~E ',E.. . . .i . ... - . ... .. . .. . .. . . . ...... - " ' '. . . . . . .. ZZ 7
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routine.

Now, suppose that, in addition, X is a locally compact

Hausdorff space, 8(X) C A, v is regular, and E is open in X.

Let x E E: then we can find an open neighborhood V of x such

that V- is compact and V- C E (cf., e.g., Hewitt and Stromberg

[20], Theorem (6.78)), whence it follows that E is locally compact

in its relative topology (E is also Hausdorff, of course). Since

A contains E along with each open subset of X, AE  contains each

open subset of E, so AE  also contains B(E). It is a simple

matter to prove now that u is regular; we omit the details. Next,

impose the additional hypotheses that E is a-compact and that A

possesses the property of [VI.37.v] (i.e., if A C X, then

A E A iff A'X E A for each compact K C X): then AE  inherits

this property. For, suppose that A C E, Let A F A and K be

compact in E. Then A 6 A and K is compact in X, so A K E A,

whence ANK E A Conversely, suppose that ArK E AE whenever K

is compact in E. Writing E u , K where each K is compact
n n

in X and contained in E, we have A - U (Ar)K ). Since K
n n

is compact in E, ArKxn E AE for each n EIN, which shows that

A 6 A . Thus, if A C E, then A E AE  iff AnK E AE  for each K

compact in E.

As an example, suppose n 67N, X -Rn, A - M , and i -
n

A . Let E CRn be open. Recalling (cf., the remark in [VI.37])
n

that A is a measure in the sense of [Hewitt and Stromberg, §9],
U
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and since any open subset of In is a-compact, we see that each of

the conditions imposed above is in fact fulfilled by these particular

choices, so we can make the corresponding assertions concerning the

measure space (E,(MA )E' 0Cn)E). In this instance, we shall usually
n

denote (X again by Xn; no confusion should result from this

practice.

Let us cite the following familiar result:

(VI.44] P R 0 P 0 S I T I 0 N. Let 0 be an open sub set o6 iRn,

and g: P, - I n a q-regutat ttamsfomatio; 6o% zome q e IN.

Suppc,6e f E C0 (g(o)). Then

f f dX n*f fog-jJgj dX.n

P R 0 0 F. Cf., e.g., Fleming [151, Theorem 5.8. 0.

Of course, the transformation formula of [VI.44] is true under

much less stringent hypotheses on the integrand. The more general

statement is obtained as a particular case of a result to be proven

later (cf., Theorem [VI.52] and the remark following).

We wish to describe next the manner in which Lebesgue measure

on ]Rn (n > 2) induces a measure on a a-algebra of subsets of

an (r,n;q)-manifold, called the Lebe6gue mea-u5e on the manifold.

Essentially, the idea is to first construct the measure for any

coordinate patch and show that the measures on overlapping patches
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agree on their intersection. These local measures are then used to

construct a measure on the manifold, which, as it turns out,

coincides on each coordinate patch with the original measure on that

patch.

The following simple observations must be made.

[VI.45] L E M M A. Let M be ail (r,n;q)-manifold. Then, with

theZi respec. v rteative topctogies inhev&ted from 1Rn, M and

each coctdijnte potch on M a'e locaLCLI compac-t o-compact

Hausdc.6 spaces.

P R 0 0 F. Let U be a coordinate patch on M; choose any

coordinate function h for U. Then h: U - h(U) is a homeo-

morphism, where, of course h(U) has its relative topology as a sub-

set of Rr . Then h(U) is locally compact and Hausdorff, since

rh(U) is an open subset of the locally compact Hausdorff space IR

Any open subset of 3Rr is a-compact as a subset, hence also as a

subspace, since it is clear that any subset of a topological sub-

space is compact in the subspace iff it is compact in 'the containing

space. The existence of the homeomorphism h then shows that U is

locally compact, a-compact, and, of course, Hausdorff. Note that the

topology which U inherits from the subspace M coincides with that

nwhich it inherits from the space mn

Now, suppose x E M. Then x is in some coordinate patch

U on M. We have just seen that there is an open U-neighborhood
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V of x such that V-U  is compact in U. From the last remark

in the preceding paragraph, V -U  is also compact in M. M is

obviously Hausdorff, so V is closed in M. From this, and the

equality V-U - V-M M, it is easy to see that V -M - V -U . Observing

that V is also an open M-neighborhood of x, since U is open

in M, we conclude finally that x possesses an open neighborhood in

H with compact closure in M (in passing, note that we can easily

show also that V -U is compact in I n, with V -U - V). Thus,

M is locally compact and, of course, Hausdorff.

To see that M is a-compact, first choose a covering

collection {UIEI of coordinate patches on M, then a correspond-

ing collection (I}fJ EI of open sets in mn such that U i I rM for

each i E I (each U is open in M). Clearly, {U )Iis an

open cover for M in kn, whence the Lindel6f covering theorem shows

that there exists a countable set I C I such that also
01 tI0

covers M. Thus, {U}eI is a covering of M by a countable

collection of coordinate patches. Each U is a-compact as a

subspace, hence also as a subset of M; we conclude that M is

a-compact. 0.

(VI.46] C O N S T R U C T IO N: M E A S U R E S P A C E

(h(U),(M{ )h(U),(h)M Let M be an (r,n;q)-manifold, and (U,h)
r

r
a coordinate system in M. Then h(U) is open in r , and Jh-

is continuous, hence Ar -measurable and Xr -locally integrable,
r r

as well as positive, on h(U). All hypotheses of Proposition [VI.38]
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are clearly satisfied in this setting, so we obtain the measure

h :  r jh-i on (:MXrh(U) given by

Ah(E) : f Jh 1 dA r o for each E E (AfXr )h(U)" (1)

E

* Proposition [VI.38] also provides a number of properties of the

measure space (h(U),(Al)h(U),h): it is complete, regular, and
r

a-finite, while, if f is a complex function defined Xr-a.e. on

h(U), then (the equivalence class containing) f C:

LI (h(U),(AX ) h(U)'Xh) iff (the equivalence class containing)

r

-l = 'hl d"r(2)

h(U) h(U)

Let us show that X is a measure in the sense of [Hewitt and

Stromberg, §9]: the map fl-  f f.Jh -1 dX r is clearly a Radon

h(U)

measure on C0 (h(U)); let Al., denote the a-algebra of subsets of
h

h(U), and V the measure on M,, associated with this Radon
hh

measure as in (VI.37]. Then

I. fd.-J f.Jh 1 dAU f fd&

h(U) h(U) h(U)

for each f E C 0(h(U)).

Thus, it is clear that (h(U),f,,,Xh) and hU),(MA )h , Ah)
h r )
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fulfill all requirements of [VI.41] (note thdt (01)
r

possesses the property of (VI.37.v]; cf., [VI.43]), and we con-

clude that these measure spaces are identical.

[VI.47] C O N S T R U C T I O N: M E A S U R E S P A C.E

(U,'M YX). Let M be an (r,n;q)-manifold, and U a coordinate
U

patch on M; let h be a coordinate funstion for U. Then we have

-1
the homeomorphism h : h(U) - U between locally compact a-compact

Hausdorff spaces, and the measure space (h(U),(f xh(U)')h); we
rI

showed that the latter is generated by-a Radon measure on C0(h(U)),

as in [Hewitt and Stromberg, §9]. Consequently, we can specialize

to this setting the general construction and results of [VI.39, 40,

and 42]. We de6ine the meaue 6pa e (U,{XU, XU) to be£ th Zimage
xU

O the meazuAe 6pa e (h (U),( l ) h(U)Ah ) undeA the ,app ng
r

h - . Note that (U,MA ,X U) is a measure in the sense of [Hewitt

and Stromberg, §9], generated by the Radon measure fi-
j foh-1 " h foh-Jh- dX on C(U). We provide a

h(U) h(U)

list of the properties of this measure space; if the origin of a

particular property is sufficiently clear, we shall state it without

further comment.

(i) (UI ,f A) is a complete measure space.UU

(ii) 8(U) C M AU, and X is regular.
U

(iii) x U is a-finite. [For, U is a-compact, and U
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is regular, from which the a-finiteness of X follows.]
U

(iv) If A C U, then A E iff AK E MU for each

compact K C U.

(v) If v is any regular measure on M such that

f fdu"f f dXU for each f E C(U), then u X - U '.

U U

(vi) If h is any coordinate function for 1', then the

image (U,M U, U) of the measure space (h(U),(MA )h(U)'Xh) under

h coincides with (U,MA ,Ax). Thus, the latter is intrinsic to
AU

the coordinate patch U, i.e., is independent of the particular

coordinate function used to construct it. We are then justified in

calling AA the o-a.geb,'ta o Lebcsue-mc wEuabte subsets c u,
U

and AU  Lebeugue measwLe on U. [To see that the first statement

is correct, we need only show that f f dXU f f 6U, whenever

U U

f r C0 (U). For then, in view of (i), (ii), and (iv), 4upka (which

remain true when M| U and AU replace M{AU and XU' respectively),

and the fact that U is a locally compact Hausdorff space, we

shall be able to apply [VI.41) to deduce that (U,MI AX U) and

(UMU ,x) are, in fact, identical. Consider, then, the q-regular
AU

transformation :- hoh- h(U) -IR , with (hCU)) - h(U),

cf., [VI.21]. Clearly, - is q-regular from h(U) onto h(U),

while h-o0-1, on h(U). Applying Proposition [VI.13]



-73-

yields

J - { ((Jh-)o,-l} J1 j¢-I , on h(C). (1)

Now, choose f E C0(U). By the manner in which XU, U Xh'

and Afi were constructed, we know that f f dAU - f foh -1 dA
U h(U)

fob1 *Jh_ dX and f dx, f fo dh ()0

h(U) U RU)

f foh-Jh- dX • Thus, using (VI.44] to obtain the second

h(U)

equality, and (1) to obtain the third, we can write

f f dXA, f foh 1.-Jh' dA r
U h(U)

f J {foh-°0'o$1{(Jh-1 )o-1 }. IJO-1i dXr

O{h(U))

- ( f°- 1 '- dXJ r
(u)

f f6 U .

U

As noted, the first statement of (vi) is hereby proven; the remain-

ing statements are self-explanatory.]

(vii) (h(U),(M ) ,r) is the image of (U,,Mf 9x)

A rh(U)' r A 'Ur U

under h. (This is just [VI.42.i], re-phrased for the present

context.]

(viii) A subset A C U is in M U iff h(A) C (MA {rh(U)"

Au r
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i.e., iff h(A) is a Lebesgue-measurable subset of R . Whenever

A EM its Lebesgue measure is given by
XU

Xu(A) X h(h(A))

oAh- dX h
h(U) (2)

j =h(A)'Jh dXr
h(U)

f f Jh-1 dA r

h(A)

[The first statement is [VI.42.ii]. For the second, we refer to

[VI.40.ii] (noting that every set in MAX is X U-O-finite),

(VI.46.1), and the obvious equality _h - Ao -h(A) on h(U).]

(ix) A complex function f on U is M X-measurable

iff fch - 1  on h(U) is (MA )h(U)-measurable. [Cf., [VI.42.iil].]
r

(x) f E LI (U , %l A X) iff foh - E A (h(U )  h(U)'h1 AU UL 1( Arh(U),(M)

iff foh- .Jh - e L1(h(U),(MA )h(U),r): if any of these
r

inclusions should obtain, then

f f dAXU - f(U foh-1 d Ab h foh 1 .-Jh1 d'r (3

h(U) h(U)

[Combine [VI.42.iv] and the property of Ah  described by (VI.46.2).]

Apropos of (x), note that whenever f is an M Xu-measurable
AU
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function on U (which holds iff foh- I  is (M )h -measurable),
Xh(U)
r

and f is non-negative, then equality (3) must hold. For, if one

integral is finite, then all three must be finite, and equality must

hold, by (x); if one integral is infinite, then all must be infinite

(by (x)), and the equality again holds.

(xi) Let U0  be any non-void open subset of M, with

U0 C U (i.e., U0  is any coordinate patch contained in U). Then

00

and

()u0 (:(5)u0 0 (U xU U0,

recall the notations and remarks of [VI.43]. Thus, if U is any

coordinate patch on M such that UPU # *, then (noting that

LtY is a coordinate patch)

Of xu)UnV = MxU f - (M Xt) , (6)

and

0 u)t = lur = (YT)uno, (7)

i..., "the Lebesgue measures on overlapping coordinate patches agree

on their intersection." [The second assertion is clearly an

immediate consequence of the first. To prove the latter, we wish to

use [VI.41]. In view of property (vi), any coordinate function for

?V
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U0  can be used to construct AX; let us use hi U0 . Then, for

any f E CC(U), we can regard f as in C0 (U), and write

f dXu - fo(hl Uo)-'.J{(hj UO) - } d r

u (hl U0)(Uo)

-f foh-1 Jh-i dAr

h(U0)

-- foh *Jh d)r

h (U) -

-loh- 1.foh1 Jh- 1&

b(U) 0

-f f dXU
U

"El f d(XU)U
0

In order to assert that (U0, A A  XU0) and (U0(,0 A )U0o(U)U )

are identical, via [VI.41], we now need verify only that these

spaces are complete, that B(Uo) C Mt'(mu that A and
0 0 x AU U1

(A 0 are regular, and that A and (mA )U0 possess the

propert- of [VI.37.v]. The requisite facts concerning AU 0

and A are contained in (i), (ii), and (iv), supta; those
U 0

concerning (MA x)U and (AU)U0 are implications of (i), (ii),uoi
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(iv), the reasoning in (VI.43], the fact that U is open in U,

and the a-compactness of U0  (cf., [VI.45]). Thus, (4) and (5)

are correct. We point out that M ) and (X ) are well-
X Uo U U

defined, since U0  is open in U, as well as in M, so that

U0 E B(U) C MX.]

In passing, we note that there is no inconsistency problem

in the case of an (n,n;q)-manifold M, on which we already have

the Lebesgue measure (Xn)M, For, in this case, the single

coordinate system (M,iM), where i is the identity on M, serves
m M

for the construction of (M,M, Ix ), and from (viii) it is

immediately evident that AlXM a Of X) M  and AM 0 n)M' since

Jim1  JiM1 - I on M.

Property [VI.47.xi] leads one to suspect that there exists

a measure on the whole of an (r,n;q)-manifold, the restriction of

which to any coordinate patch coincides there with the Lebesgue

measure for the coordinate patch. We shall presently show that this

is indeed the case. The construction of this measure is most

easily accomplished via the device of a partition of unity for a

manifold (cf., Fleming [15]), so we prepare certain facts in this

direction.

[VI.48] D E F I N I T I 0 N. Let M be an (r,n;q)-manifold,

p E3IRJ{-}, and {U } E I a covering collection of coordinate

patches in M. A family of functions {in E1 is a tocaLy 6.Zaitc



p-pa.iLtion of unity fo M, 6ubotdinate to tie cove {U I iff

i) for each 1eI, E CP(M), I > 0, and there

exists y I such that supp r is compact and

contained in U
'Y

(ii) whenever K C M is compact, there exists an open

neighborhood W of K in M and a finite set

iC 1 such that nl(x) - 0 for each x 6 i'

and x EW,

and

(iti) 7 ir(x) = 1, for each x E M. 0.

The existence of such partitions of unity is easy to prove,

from the familiar fact that there exists a smooth locally finite

partition of unity subordinate to an open cover of a subset of IRn

[VI.49] L E M M A. Let r be a 6amitCy o6 open 6ct in In;

w.Lite f2 - U r. Then tJhe,'e exis6ts a (countable) colection

{1i}= C Co(o2) 4uch that

W > 0  'or each i c v,

(ii) supp *i Z5 ccnta.ioed in somc membe o6 r, f '

each i EIN,

(/ [ IPi (x) 1, 6o each x E ,
iai

and
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(iv) whenever K C 0 i6 compact, thete exiiLt an m E V

and an open 6et W, wtih K C W C 0, 6uch that

Pi(x) - 0 wheneviejr i > m and x E W.

P R 0 0 F. This is Theorem 6.20 of Rudin [47). 0.

[VI.50 P R 0 P 0 S I T I 0 N. Let M be an (r,n;q)-mak-ZfoZd

and {u a cove ing coZZection of coordinate patche6 on M.

Then thete exist a countabee fan.Cy { iil 6otming a localy

inLte q-pattitton of unty o't m, 6ubordinate to tte covvt

{U}E I •

P R 0 0 F. For any i E I, U is open in M, while M is a

locally compact Hausdorff space ([VI.45]), so we can find, for each

x E U, an M-open neighborhood U of x such that u-M c U
ix I

and U-M  is M-compact (cf., Hewitt and Stromberg [20), Theorem
Ix

(6.78)). Since the topology on M is that inherited from IRn, it

is clear that U-M is compact, hence also closed. in I n . From
lx

this, and the equality U-M - U- rM, it follows that U-M - U-.
Ix Ix IX IX

The resulting collection {U I I E I, x r U } is then an M-open

cover of M. For each i E I and x E U , select an open set

U C]Rn for which U - I rM. Set r : I I I E I, x E U IOlX lX i.X lX

r is a covering of M by open subsets of M7n. Let { ,} C

CO(U r) be as in [VI.49], and define t i := i M, for each

i EIN: we claim that {i il fulfills all requirements of [VI.48].

First, > ,i and r ji(x) x) 1 for each x E M,
i-0 i-l

. . . . - . ... -' 7idn I 'L ~ 1 Ii n I I ' "
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from [VI.49.i) and [VI.49.iii], respectively. Next, suppose K

is compact in M. Then K C U r and is compact in IRn, so, by

(VI.49.iv], there are an open set W CIn such that K C W C U F,

and an mGIN such that i (x) - 0 for i > m and x E 0. Set

W :- W'M: W is an open neighborhood of K in M, and ni(x) -

x) 0 for i > m and x E W. Now, choose i EIN: we must show

that supp wi is compact and contained in some U (i E I).

lxlAccording to [VI.49.ii], supp TPi C Ulxi for some i e I,

i i

x. EU Thus,

supp Ti: = {x EMI ri(x) 0}-M

= {x 6 M I 4i(x) 0 0} rM C supp -4{M C xi-M

-U C U- C U
Iixi Iii i

At once, we see that supp li C U , and supp 7i is compact in M,Ii

since supp ni is closed in M and contained in the compact

subset U" (then supp 7i is also compact in mn). Finally,
ixi

we verify that n E Cq(M): let (U,h) be any coordinate system

in M. Since h- ( Cq (h(U),n), with h-1 (h(U)) - U C M C U 7,

and i E C0(U r), it is obvious that ioh - E C (h(U)). But

Tri oh -1 = i°h -  on h(U), so 7 ioh E C O(U)). It follows

that r i C Cq(M). 0.

We can now produce the Lebesgue measure on a manifold.

[VI.51] C O N S T R U C T I O N: M E A S U R E S P A C E



(MM \M). As usual, let M be an (r,n;q)-manifold. We define
XM

a Radon measure on C0(M): select a covering collection

{(U h)1 of coordinate systems in M, and let {r Go be
I I 1EIi i-1

a (countable) locally finite q-partition of unity for M,

subordinate to the covering {U)} 1 . For each i EIN, select

i(i) E I such that supp ri C U (i). Now, suppose f E C0 (M).

For each i E IN, n i f is continuous and has compact support in

U1(i) , so (IT f) U(i) E LI(U(i)IMA ' U ), withIM' i IM I (i), U IMU(i) i[i

Vi
f d( (i f)oh 1 .Jh dx. (1)

U(i) ( i 1(i)

In fact, in view of the compactness of supp f, and [VI.48.ii],

there exists an mf •IN for which i f -0 whenever i > mf.
f i f

Consequently, setting

AMf :f if d
iml d u1(i)

U (i) ii

h~ hIM)(U 1(i))

we see that the sum is actually finite. This process clearly defines

anon-negative linear functional A M  on C0(M. Let us convince

ourselves that AM is "intrinsic" to M, i.e., that it does not

depend upon the particular auxiliary objects chosen for its

construction. Let (V }f be a covering collection of coordinate

patches in M, {n 17.l a locally finite q-partition of unity for

i i | -nilnli snn [ ~
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M, subordinate to {V } and select, for each i E6J, y(i) 6 Jy yEJ'

such that supp Ri C Vyci). Define A on Co(M) by Af :-

f nl f dX V for each f E Co(M); as before, the sum
ii vy (i)

is finite, and A is a Radon measure (note that the selection of

coordinate functions for the patches is in no way essential to the

construction). Let f 6 C0M). For each i EIN,

n if d" J1 .- . f dXV
y ~i)J) Jyiyi)

v f i vj VV 
)

Y(i)

(supp fi is compact in M, so n fi - 0 on M for all j >

some mf 6 IN, and the sum is finite); since supp 7 C U(j)

for each j 6 I, and in view of [VI.47.xi], we can write further

f 1 f d Av  " 7T Ti f dA
V i vYWi) V j -l M V(i)

Si dv()rU(i

vy(i '0(j)

Finally, we arrive at the equality

Af : f f dX

Vy(i)



7 T rif dXvY(i)nU (W) (3)

Vy() nU(j)

Retracing the reasoning with the roles of {i I and {11}l
ii i i-'

{U(}. and {V i reversed, and keeping in mind theI iW i0-i £ Mi i-i

finiteness of the sums, we come to the same expression for A f
M

as that displayed in (3) for Af. Thus, A - A
M,

We de .. ne tte mea.uAc space (M,MM,%M) to be that ascociatcd
XM

With the Radcn measure AM in the s5eiLc c (Hewtt and Sttombetg,

§9]; M is Vie a-aZgeb.ta o6 LebeA.gue-mca2,6wable subsets 6 M,

and AM is the Lcbc-gue measutc on M. Clearly, by what was just

proven, X is intrinsic to M, i.e., it does not depend on the

particular auxiliary objects (covering coordinate patches,

partition of unity) chosen for its explicit construction. Perhaps

we should point out that it. is legitimate to invoke the construction

outlined in [VI.37], since M is locally compact and Hausdorff

([VI.45)).

We proceed to a listing of the more immediate properties of

AM; throughout, {(U ,h)}e, {iilc, and {i(i)} ± I  retain

their meanings as set down already.

(i) fdM"AM f f &
f i U(1

M Ut)

f(1 -f)oh1 -Jh d\r, (4)( if°h)i)' i)ii- hIM IM (r)
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for f E C0 (m).

(ii) (M, M o) is complete.
xM

(iii) B(M) C M and XM is regular.
xM

(iv) If A C M, then A E M iff A1K E M for each
XM _1M

compact K C M.

(v) M is a-finite. [For, M is a-compact, and M

is regular.]

(vi) Let U be any coordinate patch on M. Then

(U E 8(M) C MX

AUU ( ( (5)
1i M

and

xu = (M)U (6)

(recall the notations established in [VI.43]). [To see that this is

so, first let f E C0 (M), with supp f C U. Then

I f d(XM)U" f d
f M M

U U

-f f X
M

i l dXU (i

U(1)
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ffd
IwfdAu

i-i u f i)

71i 1 fdX

i-I d1u(i)U

" J ifd)U
i-1

U

fI dAS
U

having made use of [VI.47.xi], the vanishing of all but a finite

number of the i on supp f, and the fact that supp i C U (M

for each i EN. Using [VI.47.i, ii, and iv], (ii), (iii), (iv),

and [VI.43), recalling that U is open and c-compact in M, it

follows that all hypotheses of [VI.41] are fulfilled by (U,M U,)
A U

and (U,(MM )U,(XM)U). These measure spaces are therefore identical.]
MU

(vii) Let (U,h) be any coordinate system in M. A subset

A C U is in lM iff h(A) is a Lebesgue-measurable subset of
MF , in which case we have

XM(A) - XU(A) - Xh(h(A)) - f Jh- d). (7)

h(A)

[Simply combine (vi) and [VI.47.viii].]

(viii) Let (U,h) be any coordinate system in M. A
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complex-valued function f on U is (. lM )u-measurable iff fch -

on h(U) is (lA r)h(U)-measurable; if f is (.MA) measurable

and non-negative, then

f f dAM - f f d(x.)U f foli1 dA h f foh 1.Jh 1  r (8)

U U h(U) h(U)

Moreover, f E I(U,(hM )U,(%M)U) iff foh-.Jh I E
M

LI(h (U),(MA )h(UA); in either case, equality (8) holds. [Combine
r

(vi) with [VI.47.ix, x] and the remark following [VI.47.x].]

(ix) Let f be a complex-valued function on M. Then f

is AM -measurable iff f l U is PX )U -measurable for each
AM AM 1

coordinate patch U on M, which holds, in turn, iff (fj U)oh-

is (Al ) -measurable for each coordinate system (U,h) in M.
r

To show that f is A X-measurable, it suffices to show that
AM

(fj U )Oh- 1  is (m1 ~h ~ )-measurable for each i e I (i.e., it
l I X r h U1

suffices to consider any fixed covering collection {(U I h)} EI

of coordinate systems in M).

(Let f be M -measurable. Choose any coordinate patch U on M.A M

If V is open in ]K, then (f I U)- 1 (V) - Unf - 1 (V) E Af X and C U.

Thus, fl U is ('M ) u-measurable. Now, suppose that f! U is
M

(MA )XU-measurable for each coordinate patch U on M; in particular,

this is true for each U , E I. We can extract from the cover

11.
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{U I a subcover {U IIEI0, where I0 C I is countable (cf.,

the proof of [VI.45]). Let V-Cl( be open. Then U "f -(V) -

(fl U)-l) M (_OxM )U C Mi M  for each i E Io, so also f- v)=
Mt M0

U {U f -(V) } C , since M is a o-algebra. Thus, f is
tEl 0 M A M

Al -measurable. By (viii), fl U is (hiX )umeasurable iff
AM M

(fi U)oh- I is (IMx )h(U)-measurable, where (U,h) is any coordinate
r

system in M. These facts show that the first statement of (ix) is

correct. The second statement is a corollary of the reasoning just

completed. ]

(x) Let f be a non-negative l x-measurable function on

M. Then

f NdAf

-i d f dAM (9)

Ul(i)

- -l -1
- IJ (w f)oh (i*Jh () d

ii h
h' (i) ((i)

[A well-known theorem of Lebesgue (Hewitt and Stromberg [20],

Theorem (12.21)) permits us to write f ( gi)dAM =

® M

g, dXM for any sequence (gi)ii of non-negative AlM-
i-I

measurable functions on M; the sequence (lTif)i-l fulfills these

I'
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requirements. Using this in conjunction with (viii) and (ix), we

obtain

ff dX ~ 1T f I lrXf M

Mf dX

M

7 7Tif dXM

-1--

(wrf)oh( Jh ) dXr "Jul ht(IM(U(M))r

(xi) Let f be a complex M measurable function on (or

defined AM-a.e. on) M. Then f E Li(MMA ,X) iff

J wIjfl dXN < c, (10)

z.e. (by (x)), iff

(it,(f).)ht(1) d1 <f (i 1fff ),M
h I M (U M)

in which case we have

f dM f V I f d M

i-i h (

MU(i) 
(12)

Jul fhM(i) 
r "

ht ( ) (U 1(i))
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[We may suppose that f is defined on M. Since f is MM-

measurable, f E L (M,PtJ 9X ) iff Ifi E L(M,M M ) , i.e.,

iff f Jf( dAM < -. The latter obtains, in view of (x), iff (10)

M

or, equivalently, (11) should hold. If f E Li(M,MX XM) , the

equalities in (12) follow from the definition of the integral of a

complex function in terms of integrals of non-negative functions,

and the fact that (12) holds for a non-negative integrand, by (9).]

For our purposes, the following "transformation of integrals"

result proves to be quite a useful by-product of the develop-

ment of the Lebesgue measure on a manifold.

[VI.52] T H E 0 R E M. Let m be an (r,n;q)-manioZd. Let

m E v, and .,ppo6e that g: M -- mm is a q-imbedding; the

ae vttiom o6 Theorem [VI.30] hoed, 6o that, in pvtcuLa,,, g(M)

i6 an (r,m;q)-mani-fofd.

(i ) A .6 b, et E C g (M ) i 6 i n Al, g -i(E ) M .
gCM)

i E E MX , then

X fME) - o" f S { J dX (
M 1g (E)

(ii) A compLex 6unction f on g(M) iS MA -mc wu-ab~c
~g (M)

i6, fog is Ai -mteau abte.

(ii) A compCcx function f defined Ag(M)-a.e. on gM)

g()_n .M
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Z in L1 (gxg(,M g()xM)) i6 fcg.Jg E

LI(M,M, 9A); i6 eitheA inctusion shculd hcld, then

I f dxg(M) - fog.Jg dX M. (2)

g(M) M

(iv) If f i6 non-negative and M (-meaoujabZe on

g(M), then equa2ity (2) hoZdz.

P R 0 0 F. Since M is a locally compact a-compact Hausdorff

space, (. ,X M) is complete, B(M) C M, x is regular,

Jg > 0, and Jg L (M,1 4 ) (Jg is continuous; cf., [VI.25]),

we can construct the complete measure space (M,I{AM, (IM)g) as in

Proposition [VI.38], where (X M)j(A) :f Jg dXM, for each

A

A 6 f x. (AM) 3 g is regular and a-finite. In fact, (M, M, 'g
g AM Jg

is the measure space associated with the Radon measure f;-

fJg dAM on C0(M) as in [VI.37]; this follows from (VI.41],

M

once we take into account the properties just cited, those of [VI.37],

[VI.51.iv, and the equality f f d(g) " . fig dX M for f E

M M

C0 (M) ([VI.38.iii]).

Now, it is a simple matter to check that the prerequisites

of the construction effected in [VI.391 are met by (M,MA 9(M)Jg)

and g: M - g(M). Thus, the image (g(M),M ((AM)g)g ,((XM) Jg) g)
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of (M,M (M)Jg) under g is defined; for brevity, let us write

M : Al ) and :- ((AM)Jg)g" This image is a measure
Mg ~ M Jg )9Mg gg

space in the sense of [Hewitt and Stromberg, §9], uiz., that generated

by the Radon measure f I- f fog d(XM)Jg fogig dAM on C0 (g(M)),

M M

and so possesses the properties of (VI.37]. The conclusions of

a'

both [VI.40] and (VI.42] can be applied in the present setting, the

mapping g: M - g(M) being a homeomorphism, since g: M -R is

a q-imbedding ([VI.23.iv.l]).

We claim that the measure spaces (g(M),.! ,g(M)) andAg(M)xgM

(g(M),M ,x) coincide. Let us suppose for the moment that this

has been proven, and check that all conclusions of the theorem follow

thereby:

(i) By (VI.42.ii], a subset E C g(M) is in M iff

9-l(E) E M A Since Mg - M x the first part of (i) follows.

AM g(M)

Since X X and X is o-finite, (VI.40.ii] gives,
gCM) M gCM)

whenever E E Al - Ml , using the definition of (XM)jg,
xg(M) Wx

Sg(ME) - Xg(E) - (XM)jgC- (E)) - Jg dXM.

g (E)

Thus, (i) is correct.

I
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(ii) From the equality M " M g ( M) , (ii) is an

M gM

immediate consequence of [VI.42.ii].

(iii) From [VI.42.iv], a complex function f, defined

Sg-a.e., 4.e., xg(M)-a.e., on g(M), is in LI(g(M),,( tMA) -

Ll(g(M),td ,"g(M)) iff fog E LI(M, (A ,(AM)Jg), but [VI.38.iv]

says that the latter inclusion is valid iff fog.Jg E Ll(M,,A',IMH)
M

If any one of these inclusions should hold, (VI.42.1) and

(VI.38.iv] give

f f dA g1)f d~ fog d(X~) ffog-Jg dXMP
g(M) g(M) M M

which is just (2). This completes the proof of (iii).

(iv) Statement (iv) is a simple consequence of (iii). For,

let f be non-negative and X M -measurable on g(M). If one

of the integrals appearing in (2) is finite, then both must be

finite, and (2) holds, by (iii). On the other hand, if one of the

integrals in (2) is infinite, both must be infinite, so (2) holds,

again by (iii). Note here that fog.Jg is M X-measurable, by
AM

(ii) and the continuity of 3g.

Thus, the proof of the theorem is reduced to verifying that

(g(M), ) - (g(M),Af A) for which we shall appeal,
, g(M) g M
a(t ) A Mo

as usual, to [VI.41]. A quick check of the properties of these two
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measure spaces (cf., [VI.37.ii-v]) shows that it is enough to prove

that f d M f M for each f E C0(g(M)),

g(M) g(M)

considering the hypotheses of [VI.41]. We already know, however,

by the manner in which g ,(M)g)g and (XM)Jg are con-

structed, that

f f dA9 } fog d(XM)jg = fog.Jg dXM

g(M) M M

whenever f E C0 (g(M)). Therefore, we wish to demonstrate that

3 f dXg(M - 3' fog-Jg dXM, for each f E C0(g(m)). (3)

g(M) M

Suppose, first, that f E C0 (g(M)) with supp f C U, where U is

any coordinate patch on g(M). Choose a coordinate function h for

U. If we set U : g-l (U) and h :m ho(g( U), then U is open in

M, h(U) - h(U) is open in Rr , and h is clearly a homeomorphism

of U onto h(U). Since i -l oh-i and g-1: g(M) _]Rn

is a q-imbedding ([VI.30.iii]), it follows that E

c q( ( ) n) and rank Dh-l(x) - r for each x E h(U). Thus,

(',h) is a coordinate system in M. Note that h- goh

Recalling (VI.24.3), we have

--1 --1 (goh ),A... A ( goh - )
-(Jg)oh1 Ar M .. . .Ah r

A.. Af r

--1
M 3(goh ) , ^ 

-. ^(go -  
r

m J(goh -l A -
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on h(U) hCU). Then, using [VI.5l.vi] and (VI.47.3) gives,

since supp fvg C g-(u) - U,

fog.Jg dXM fog'Jg dk-

M

f fogo - - '(Jg)oh- '*Jh- I dX
I r

h(U)

foh- *Jh- I dX

r
h(U)

But also, again from [VI.51.vil and (VI.47.3),

f f d -(M)" f dXu U f foh-l'Jh-' dX r
g(1.I) U h(U)

This establishes (3) for the case in which supp f is contained in

a coordinate patch on M.

Now, considering the general case, let f E C 0(g(M)). Let

{U }I 1  be a covering collection of coordinate patches on g(M),

{ i} I a locally finite q-partition of unity subordinate to

{U'I}EI, and, for each i EIN, choose ifi) E I such that

supp C Ui). For each i 6 i, set U - (U), and for each

i EIN, set T : 1icg. Then it is easy to check that {U 1 EI

is a covering collection of coordinate patches on M, { i

is a locally finite q-partition' of unity for M, subordinate to

{U }II' and supp i C U1(1) for each i EI. For example, to

see that i Cq(M), let (V,k) be any coordinate system in M.

(g(V),(gok-) - ) is then a coordinate system in g(M) (cf., the
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proof of [VI.30]), (gok- )- (g(V)) = k(V), and the inverse of

(gok- )-1 is gok- I. Since i E Cq(g(M)), we have iok- I

it ogok - E C(k(V)): it follows that i E C!(M). We omit the

details required to verify the remainder of the assertions made
above. Now, certainly f E LI(g(M),M g (M)), since supp f

g(M) gM

is compact and Ag(M) is regular, and supp wif C U for each

i E . Then, using [VI.51.xi] and the preliminary result for

continuous functions with support in a coordinate patch,

f fdA icc 7 T f dXf g(M) f i g(M)
g(M) g(M)

- [ f (lf)og'Jg dM
i-li

" f og'Jg dAM
M

- f fog.Jg dAM,

M

the last equality holding, again, by [VI.51.xi], since we obviously

have fog.Jg Li(M, MAY M). Thus, (3) has been proven, and, with

it, the theorem. 0.

Let us observe that [VI.521 holds in the case r - n - m,

i.e., when M is open in n , and g: M - n is q-regular.
Then Jg - jJgI ([VI.13]), and XM , x become restrictions

of the usual Lebesgue measure Xn , so (VI.52.2) reduces to the more
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familiar formula for the transformation of a Lebesgue integral over

an open subset of Rn; note the remark following [VI.471. In

this case, [VI.52] complements [VI.441.

In the next group of sections, we present and examine various

nregularity hypotheses for open subsets of IR

[VI.53] D E F I N I T I 0 N S. Let 0 be an open subset of

Rn (n > 2), and q E NJ{}.

(a) Let x E a: n is q-tegutaA at x iff there exist

an open neighborhood, Ux, of x in JRn and a

function 4x E Cq(Ux) such that

(i) grad *x(y) # 0 for each y e Ux,

(ii) 3u x - {y 6 UxI 0x(Y) - 01,

(iii) OYU x ={y 6 Ux xI (Y) < 01.

(b) n is a q-teguta.' doin.Zn iff 0 is q-regular at

each x C= . .

[VI.54] R E M A R K S. Suppose that 2 C n  is open. (a) If

0 is q-regular at x E 30, then x lies in a relatively open

subset of a which is an (n-l,n;q)-manifold (e.9., the set

annU of [VI.53.a]), and n is in fact q-regular at each point
x

of this open subset. Consequently, any non-void set r C an such

that Q is q-regular at each x e r must be contained in an open

subset of a' which is an (n-l,n;q)-manifold and at each point
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of which Q is q-regular (e,.g, the set U {SYU 1; cf.,
yEr y

also, Remark (VI.4.b]). If 0 is q-regular at x E , then

S1 "lies on one side of its boundary in a neighborhood of x."

(b) If Q is a q-regular domain with Kf# 0, clearly

a2 is an (n-l,n;q)-manifold. A q-regular domain need not be

connected.

[VI.55] P R 0 P 0 S I T I 0 N. Let s be a 4eguutaey cpez

ubs et cf 1n.

(i) -Suppose that m Z6 an (n-l,n;q)-mantfcotd wLhch is.

teativety open in aQ. Then Q and i' ate

q-regtalt at each point oS M.

(ii) I6 DS2 £4 an (n-l,n;q)-mani~old, then 0 and Q-'

are q-regwa't domains.

P R 0 0 F. i) Choose any x r M. Since M is an (n-l,n;q)-

manifold, there exist an open neighborhood, Ux, of x in IRn

and a function $x 6 C (u ) such that grad x (y) # 0 for each

x x xyEUO, and MCt x - {yu I Ux , (y) - 01. M is open in ,s

we can find an open neighborhood, Ux, of x in IRn such that

C U^ and aUri! C M. Let i :$ 1 U : then it is obvious
xx x x

that x CE C(U) grad x (Y) 0 0 for each y E 0x9 and

' Ux {y x (y) -0). If i {l,...,n}, and v I ,

let us denote by X(i) the increasing (n-l)-tuple which is

obtained from {1,...,n} by deleting i, and write Y(i) (Y).
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Then, by the implicit function theorem, there exist an i Ex

(1,...,n}, an open neighborhood of x, W C U , an open neighbor-x x

hood of x(i), V CIRn , and a function * E Cq(v ) for which

{y x x . I(Y(i

Clearly, since Wx C x,

{y • X x(y) = 01

nNow, choose e > 0 such that B (x) C W x then choose 6 E (0, E/2]

such that B n-l(x ) C V and I¢(i)-O(x )I < e/2 wheneverX

S - (xci)). Set
6 (x) n tn-i

U :- B n(xl{y Emn Y(ix 6 iB x )},
x E(i) 6 (ix)

and define 4 : U -'Km according to

i
x(Y) :- y ) for each y E U .

xx

Obviously, Ux Is an open neighborhood of x in ]Rti, %0 x qL )

and grad % does not vanish on U . Moreover,

arrUx = {y E Uj 'xI(y) - 0}:

for, if y G a.TV x9 then y 6 a•s'ixg whence Y() V and
i x

y x . 0(y(, so tx(y) - 0; if y E Ux  and x ( y) 0 0, then

i

B • B 1 (X~ix)) C and y - 0((ix)) so y 2. Next,
x X x

define



Ux_ := {y E Ul xV(y) < 0) and Ux+ := {y e Ux Cx(Y) > 01;

note that U - U xJU U{ U. We claim that (exactly) one of
x x- X+

the equalities 9-1Ux - UX_, 9Ux - UX+ is true; if the former

holds, then U and V fulfill all requirements of [VI.53.a],x x

while if the latter equality is valid, then Ux  and - fulfill

those requirements. Thus, the q-regularity of 1 at x will

follow once the claim has been substantiated.

To see, then, that (precisely) one of SU x -Ux_, T'Ux

U is true, suppose that U and U+ have been shown to be

connected. Obviously, arUx_- 0, aUx = 0, and P' 0,

so

Ux- (U_,)Qn)U(Ur'n), and Ux+ ( " x+ U (U2 "o)

The connectedness of U implies that not both U x I # 0 and

U x '0 # 0 can hold, for 2 and , are separated. Similarly,

Ux+r 0 0 and Ux+ ,o 0 0 cannot both be true. We do know that

at least one of U ('IQ# 0, U r+l l 0 must be true, for otherwise

we should have U "?Q - Q{UxUU U(aMU D} - 0, which is impossible,
X x- X+ x

since x r an and U is a neighborhood of x. In fact, exactlyx

one of OM - 0, W UX+ 0 0 holds: if both hold, then '°U =

0, 0 ' Ux+ 0 0, by the observation made above. Since is

regularly open,
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• , '0- '0--

-01

Thus, x E a( o 0), U is a neighborhood of x, but J, U -x x
0'°.{U UU U{3(n 'O )-U D - 0, which is impossible. US,

X- x+ x

precisely one of Ux# 0, iUx+ # 0 is true. Ile r der the

two cases, in turn:

(i) Suppose that U_ # 0: then rUx+ M 0, and

°0 nu- 0 If y E mU. then y t a, y I U,+, but y E U

so we conclude that y E Ux_. On the other hand, let y E U :

then y 4 0 and y § an, so y E Q, giving y E DIU . There-
x

fore, M1 U - Ux, in this first case. Since MU - 0, obviously

we cannot have anU - Ux x+"

(ii) Suppose that f #0UX+ 0 0: then Ux_ - O, and

a0 Ux+ - 0. Now we find, via reasoning similar to that just carried

out, that U x - UX+ (and W)U x # U x).

For the completion of the proof, there remains only the

verification of the connectedness of U x and Ux+' We shall prove

that U is connected, the proof for Ux+ being quite similar.



It suffices to show that U X-is pathwise connected. Then, choose

Yand in Ux_, so yCE B Wx, Y.(. E B;(x(.) and
J2 E J

x xXj 'C ( for j =1, 2. Set

x

B: y ]Rn1  y(,)C B n1 (x y = x , (x )
6 1 Ci 6( Ci x T)

If y 6 BV, then y E U . since Y(i ) E B n 1 (x 'I whilex x Ci Y'
2 x

l =i b{tY(i ) -x 2ixIn11 Xjxxi

(i~n-l

-x 2 ~jX( )I21
= i) (i)ln-l (i~x x

2
< +, L 4 L

so y B~ nCx). Moreover,
E

x (y) =Y X-4CY~ ))

(x Ci) )-CPY(i) L2

< I ";Cx )-C ''Ci 2-
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so y E U x_ . Thus, B 6 C Ux_. Define, for j - 1, 2, Y- EIn by

i
X :- (x ) ,

k ky :M y., for k E {1,...,n}, k # ix.J J3 x

Clearly, 9 E B6  for j - 1, 2, and B6  is convex, so the line

segment joining l and '2 lies in B6, hence in Ux_ We

shall show that the line segment joining y and lies in U,

for j - 1, 2; from this, the pathwise connectedness of U

follows easily. Then let j 1 or 2, and suppose y is on the

line segment joining y and y., c..., y - y.+s(y -y ) for some
i i i ± it i[0,1 (, x . X+s Ox )yx

[0,1], so Y x = yJ XY-) =~ X +S1  ) ,

and Y(i x YJu x ) E B
n (x(i x)) (having noted that Yi )

yi(ix)) Observing that 0(y (ix) 0( €(J(ix)) 1¢(X (i x))(J(i x))i

e/2, and recalling that yjX < ¢(YJ(ix)) we find

Y X- (Y(i x) = yX- (Y ~ x)+s ( x )-y X- E
x x

i
x x-(l-s)[yjX-(yj x)}+s ¢(X ix)-¢(yji)-

. (y) < 0. In order to prove that y E Ux, we now need only

show that y E Ux, for which it remains to be shown that y E B (x).
C

We consider the two possible cases:

I

I



xx

Mx Asmeta x < Y- x thnxfrt
y~~~(x 2~x)-y - y

yXO xix yiX 1k x )+u -X >y -OX x

and

y ~ X- X ~ ))- E-~, )s x

(1Js)y x - (x 1 ) 2
(ix 2

which give

Si i

lyXO xi)) ( -( ) )L ( xi x xy ' (x )

Thus,

2yxI j-~ Ij)_x 12~..~ x x 2

-yx~ t~cf(j n-l +Iy Xx I )

I 2 + 'O 2

x x x

2

ly I

I x
(ii)' Assume that y x y - sCx~i) now,

ji j 2
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y X-(xl) - (1-s)(yX-O (x 9)-s j> (ls) i j- . - L

and

Y x- ((x) (1-s)(y X-O(Y ~x))+(I-s)(O(YJ x)_¢o(x)))_s"i i x ± ~ ~ i) (

-< 1-s)(W(Y x ))-(X(ix

< E
2

i
Consequently, ly x- (X(ix )! < e/2, so

i 2

2+ x2 1 X ) 2  2 2lY-Xln fY(i )-X(i x) In-l+ y  < 6(+x - < E C

In either case, we find y E Bn (x). Then, as noted, y E Ux, and
E

the connectedness of U follows.X-

We have now shown that .Q is q-regular at each point of M.
-!

To see that Q is also q-regular at each point of M, simply

observe that S is also regularly open (since Sl- = colO =

Q-o1o . silo = Q ) and 3Q ) = S2 (since a(Q-') =

2-'-2-' Q-flo- - 0-°'rQ- - S'r2- ), so the first part of

the proof may be applied with s in place of 2 to secure the

desired conclusion.

(ii) This statement is an immediate consequence of (i),

in view of the definition [VI.53.b]. 0.

[VI.561 D E F I N I T I 0 N. Let Q C]Rn be open. Suppose that
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x Ki, and there exists an open neighborhood of x in ;2, M ,

which is an (n-l,n;l)-manifold. If N E NM (x), then N is an
Mx

exteAiorL ncr'mna for a a x iff there exists a positive such

that

x+sN E Q for -6 < s < 0 and

x+sNE for 0 < s <6. .

Suppose that, in the notation of the preceding definition,

M and M are K-open neighborhoods of x which are also
x x

(n-l,n;l)-manifolds. Directly from the definition [VI.5], it is

easy to see that TM (x) - TR (x), hence that NM (x) = N (x).
x x x x

From this, and the fact that NM (x) is a one-dimensional subspace
x

of RIn, it follows readily that there can exist at most one exterior

tlt normal for U2 at x: if v and v2 E NM (x) are exterior
x

unit normals for 3. at x, then either Vl = V2 or v = -V2f

but the latter implies that x+sv2 E 0 for all sufficiently small

positive s, which is impossible. Thus v 1 
= V2 .

(VI.57] P R 0 P 0 S I T I 0 N. Let si be an open .ubset c6 jRn

(n > 2).. Let r be a non-void iteatively opesi 6ubet cf aP, *uch

that, JoW 6cmC q E IN, a7 i.6 q-rcguo a.t each pcint o6 r.

Then r i6 an (n-l,n~q)-manifod, and therte ez-,6ts a untque

con.tinuou.s dunction v r: r - ]Rn  uch that v r (x) iz an extec. Lcc

unit no' a fct ail at x, 6or each x E r; v r 4- ca.U d the

exterior unit normal field for r. Mo tceveA, i6 q > 1, Vh C1"



v E C R f q EIN, C' i E C(",n) if q =

In patt~cuf-at, S i, a~c q-tegutat doLti kt!Zth ~

then thesc concZusiojL5 hoCd wtik r =aQ.

Before presenting the proof, let us state that the notations

v and v used herein shall be standard in the sequel, whenever

the requisite hypotheses be fulfilled.

P R 0 0 F. Let x E r. Since aQ is q-regular at x, there

exist an open neighborhood, Ux, of x in Rn and a function

0x E Cq(Ux) such that grad Cx(y) 0 0 for each y E Ux, K>Ux =

{y E Ux x(Y) - 0}, and Q-U X {y E Uxl x(y) < 0) (so, also,

PI ('U - {y E UJ xt(y) > 0). F is open in K, so we can find

an open neighborhood, of x in mn such that U C U and
xx x

U.11- x C r. With x= x  , it is clear that -x E Cq(E

grad (y) # 0 for each y E U . and P -U {y q xy) U 01.
X x x x x '

Thus, r is an (n-l,n;q)-manifold. Obviously, we also have

frUx {y 6 xj x(Y) < 0}, and --x = {y 6 b %x (Y) > 01.

We now know that x is contained in an (n-l,n;q)-manifold which is

open in ;Q, viz., r. According to [VI.7], grad t (x) E N.x;

we shall show that grad i (x) is, in fact, an exterior normal forx
' 0suh ha n (x and

a^ at x. For this, choose e' > 0 such that B ,(x x
Xx x

set

C1
(s) : (x+s .grad i x )) for Isl < r :  xX X X X I g r a d j ( x ) 't

x n

This clearly defines a function 6x C1c-x ) for which
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(0) - 0 and

(S) - grad ix(x+s. grad (x))* grad ix) for Is <Ex.

Then '() a grad x(X) 2 > 0, whence there is a 6. E (O,ex)
Tn 0 a nl

such that O(s) > 0 if Isl < 6x . Now, if 0 < s < 6X , we have,

for some A E (O,s),

x (x+s" grad x(x)) - qx(S) * ix(0)+ (s)-s = '(S).s > 0,

-I

showing that x+s. grad Cx(x) E Q In a similar manner, we can

show $x(x+s" grad 4x(x)) < 0, i.e., x+s" grad 4x(x) E Q, for

-6 < s < 0. All requirements of Definition [VI.561 are thus

fulfilled by grad I (x), and we can assert that it is an exteriorx

normal for 3Q at x 6 r.

Now, define v : r -n by

grad x(x)

Vr(x) :- 1grad x) n  for each xE.

For each x r r, lvr(x){n - 1 and vr(x) is an exterior normal

for a at x; by the observations following [VI.56] v r is

the unique function with these properties. To see that v r is

continuous, choose x e r. For each y E rfU .. we may suppose

that Uy - Ux and iy =$ ,x whence

grad 4C(y)
V "grad yy)I n  for each y E r Ux,

showing clearly that vr is continuous on rnUx , thus, in particular,



continuous at x.

Next, suppose that q E IN with q > 1. Let (V,h) be a

coordinate system in r (recall that r is an (n-l,n;q)-manifold):

to show that vr e Cq(FJRn), we must demonstrate that v.Oh -1
r- I

C cq-1(h(V);Rn). Select x E h(V), and write x :- h- (x). Then

VtU x  is an open neighborhood of x in r, and h(VI x) is an open

n-ineighborhood of x = h(x) in JRl, with h(VU x) C h(V). Since

grad x (y)
r for each y E V x"1(y) =grad x(Y) n x

while hl ( -) ~whenever 9 E h(Vfl ), we have
x x

-1 0 grad 0(h ( for each GE h(V-U).
hgrad x(h-1 (y))In

1 q c q-I1x n -o nh ate

Now, h- E C (h(V)R n ), and grad cx E C ( ,g3l) so the latter

equality implies that (v roh- )I h(V x) E cq-1(h(V'x );*n). Thus,

V r oh is of class Cq -1 in an open neighborhood of each point in

h(V), whence v Oh-I E Cq-1 WV) Rn). As noted, this implies that

vr E Cq-I(r;n). If q - -, the proof of the inclusion yr E

CW(r.,Rn) is almost identical.

The final assertion of the proposition is a simple application

of the statements already proven, because of Definition [VI.53.b]. 0.

It is worth isolating the following fact, essentially

verified during the just-completed proof of [VI.57].
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[VI.58] L E M M A. Let be an open subset of IRn . Let

x E a2, and 6uppose that 2 i. q-regult at x (q E Iu{ }).

I .the open neighbothood o6 x, U, and the function 'x E Cq(Ux)

aWe as in the defi~tion (VI.53.a], then grad yx(y) is an extetiot

normal dor afl at each y E Mu .x

P R 0 0 F. Let U and 0 be as in [VI.53.a]. It is first ofx x

all clear that the relatively open subset of M, 3XPU , is an

(n-l,n;q)-manifold. In the proof of [VI.57], it was shown that

grad D (x) is an exterior normal for K at x. But the same
x

reasoning used there serves to prove also that grad x(y) is an

exterior normal for M at any y E asIUx, for, if we select any

such y and take Uy U, and P = , we obtain a set and a

function for y fulfilling the requirements of [VI.53.a]. 03.

We shall later find the following technical fact useful.

[VI.59] L E M M A. Let f2 be a non-void prtopt subset c6 iRn

which i a q-reguar domain 6or some q E N J{-}, with K, compact.

Then theAe exist6 a positive 6 such that, whenevc. x E

x+sv (x) E 2 if 0 < s <

and

x+sv (x) E Q if -65 < s < 0.

P R 0 0 F. Fix x E 2. By the q-regularity of 2 at x, we

can find an open neighborhood of x in IRn, Uxt and a function

II
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4x E cq (U) such that

grad PCxy) # 0 for each y E U, (1)

x

an U- {y E Ux x (y) - 0}, (2)

and

'U - (y E U 0x(y) < 01; (3)

then grad 0x(y) is an exterior normal for 3 at each y E ;:'iU x

([VI.58]). Choose c > 0 such that Bn (x) C U and setX E
x

M -sup figrad (P (Y~'nI yE B n(x}
XX

Now, if y E Bn (x)- and Isl < c /Mx , we have
x

ly+s grad x (y) -Xin Lx+-SlM < 2cx,

so

y+s. grad 2 C 2(x) C Ux.

Thus, we can define iPy: (-c x/M 'x, x/M x ) -IR by

y (S) :- x (y+s• grad x(y)) for IsI < x/M ,
y x x(4)

whenever y E Bn ()
x

for each such y, it is clear that 4y E cq(c x/M, E x/Mx ), with

* -(s) a grad t (y+s. grad * (y))* grad ¢ (y), IsI < Ex/M (5)
y x x x x

From the latter equality,



YY

iY )-Irdt()2 > 0 for each y E Bn ()

x

with which we can assert that there is a positive m such that

2 2

p(0) - Igrad 4x(y)l 2 > M for each y E Bn (x)-. (6)n - x Ex
x

Thus, the function (y,s) -* '(s) is, in view of (5), continuous
y

on B (x) x [-C /2M , e /2M ] (whence it is uniformly continuous
C X X X

x

there), and, by (6), positive on Bn (x)-x{0. These facts imply
Cx

that there exists a x E (0, C /2M such that

p'(s) > 0 for each y E Bn (x) - and for fsj < 6; (7)
y C

x

indeed, by the uniform continuity, we can select 6 E (0, E /2Mxx x x

so that

11I (s)-IY(o)I < m 2/2 whenever y= Bn x)-, Isi< 6x9
y y x x

giving, for such y and s,

2

P(S) - Y(o)+,;(s)-' (0)}, mx - 0.

Note that, by (2) and (4),

n
y(0) - 0 for each y E B (x). (8)
y Cx

Now, choose any y E Bn (x)n3Q and s E (0,5x): the mean-value
x

theorem shows that there exists an s E (O,s) for which
y
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Sx(Y+s grad x(y)) y (S)

= 'y(0)+y(s y).s

- *y(sy)s
y

> 0,

having used (7) and (8); we have already convinced ourselves that

y+s. grad x(y) C Ux, while (2) and (3) obviously imply that

-'U x - {y E Ux P x(Y) > 0).

From these data, we infer that

y+s" grad x(y) E n' whenever y E aY'Bn (x) ,X £

x (9)

s E (0,6 ).

By reasoning in an analogous manner, one can show that

y+s, grad € (y) E Q whenever y E aSYBn (x),
x x (10)

s E (-6xO).

From (9) and (10), since v Igrad 4 1-' grad T on ;CYU9

by taking note of (6), we have

y+s.V(y) 6 ' [.2] whenever y E D')Bn (x), and
C

x (i1)

0 < s < m 6 [-m 6 < s < 0].

Now, (i) holds for each x E 9. To complete the proof,



we use the compactness of a£ to select {x so that

(B (x )1 affords a cover for a, and take

X i

xi

it is easy to show that this 6 possesses the desired property. 0.

The properties of regular domains in the class described

in the following definitions are particularly nice, as we shall

presently discover.

(VI.60] D E F I N I T I 0 N S. Let Q C2 n  be open. 4 is a

Lyapwtcv doma.n iff

(i) 0 is a 1-regular domain

and

(ii) the exterior unit normal field for aP, v a, is

H6lder continuous, i.e., there exist an a > 0 and

an a E (0,1] for which

IV 30(X 2)-V il(x I)In . al x2-xlIn

(1)

whenever xl, x2 E a.

Let 0 IRn be a Lyapunov domain. Any ordered triple

(a,a,d), where a > 0 and a E (0,1] are as in (ii), and d > 0

with ads < 1/2, shall be referred to as a .set ot Lyapucv cc' aits

do't g
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Let {I } be a family of Lyapunov domains in 3n. The

family is said to be wufiZC'mZy Lyapuncv iff there exists an ordered

triple (a,a,d) which is a set of Lyapunov constants for £, for

each i E I. I.

[A.1.611 R E M A R K S. (a,, Let n cIn be a 1-regular domain

such that a is compact. Suppose that, for each x G K, there

n
can be found an open neighborhood, Ux of x in IR and a

function P EC1(Ux ) as in Definition [VI.53] which is also such

that (grad @x)[ Ux  is Hdl1der continuous: there exist an
x x

tht grad 1)- radu isxl) de cox2-ntiuu: teeeitaa > 0 and a C (0,11 with

x

.and a' >0, with grad > a' for each y E Bn (x)-Ux, an ax  ,wt ga xYn - x
x

for each x E K. If x E 3, it is then easy to see that

Igrad 1x(:2) grad x(il)

I'3(x2)-'n(X)in " grad Vx(k2In ngrad nx(k1)

2a a
-- x2- X, for x E, 2 Z'Bn x).

x x

Choosing a finite set {x i}M C an such that {1, CBn  (xi)I m

i i C /2i i=l
xi

covers a, it follows that

V < a!Y2 Yl a, for yl y2aQn(Y2)-van(Yl)1n -- y-y n ...
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where a :- min {a a max max
l< i<m l < i< m

2/ min Thus, is H61der continuous, whence
1 < i < m

i is indeed a Lyapunov domain.

(b) Suppose that i Cm n is a q-regular domain, with

q > 2, and let aQ be compact. Then Q is a Lyapunov domain. To

see this, for each x E a2, let U cmn and t E Cq(U x) be asx x

in [VI.53], and choose E > 0 such that Bn (,)- C Ux; by the
x ~ E

x

mean-value theorem, grad is Lipschitz continuous on -B nx).
SX E

X x

Following reasoning similar to that employed in (a), we even find

that v is Lipschitz continuous on aQ.

(c) In view of [VI.551, we can replace the hypothesis of

(a) [(b)] that 2 be 1-regular [q-regular, with q > 2] with the

hypotheses that Q be regularly open and K be an (n-l,n;l)-

manifold [(n-l,n;q)-manifold]. Maintaining the other hypotheses,

we can conclude in this case that Q and Q-' are Lyapunov

domains.

[VI.62] S T A N D A R D N O T A T I O N S A N D

C 0 N S T R U C T I O N S. It is convenient to introduce here

certain notations and simple facts relating to the geometry of the

boundary of a Lyapunov domain. Throughout this section, 0 Cm n

is a Lyapunov domain, and x e a. See Figure 1.
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n(i) We denote by n x: IR x+T ;-4(x) the orthogonal

projection map of n onto the tangent hyperplane to K at x,

n
x+T a(x), so that, for each E EIR n, 70() is the unique element

of x+T3M(x) such that

I7 X(&)In = i {l-InI e x+T (x)). (1)

Letting P: JRn - T (x) denote the orthogonal projection ontox a

the (n-l)-dimensional tangent (sub)space T (x) C]Rn, it is a

simple matter to check that

x(C) X+Px(&-x), for each C I n; (2)

indeed, (2) is a consequence of the fact that (1) characterizes

x (C) in x+T 3 (x) and the equality 1&- x(o) n = 1&-(X+Px( -x))i n

for C EIRn, which follows, in turn, from (1) and the familiar

property

j(C-x)-Px(C-X)In = inf {I(C-x)-In I Z E Ta(x)}.

,xn-I

We shall denote by jxinI an orthonormal basis for T (x);
i i-1 M

then { X ..... x_l,v(W) constitutes an orthonormal basis for

In. Let us show that

-1 X() = {( -X(M)an (x)}v ;(x), for each E C n: (3)

if C E n , then &-n &) -{(M- e"(C))e an(x)v a(x)

n-i
+ (C-(C))CxE-x, but (-&() - (C-x)-P (C-x) is in the

x ii x
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-x 0
orthogonal complement N .(x) of T,,), So ,i

for each i E {l, ... n-l}. Thus, (3) is true.

(ii) If d > 0, we define Ii :- n (,B(x)). Evenx xd

though El depends upon d, we omit any indication of thisx

dependence in the notation, which should cause no confusion.

(iii) Let A mn ..mn denote the linear isometry such

that

Ax (n)
A e . , E e

Av (x=~(4)

Av W e(n)

and then define K : In _n according to
x

Y() : A ( -x), for each E eIn. (5)x x

Clearly, X C' OR n) is an (affine) isometry, hence a homeo-

morphism, of Iin onto itself; we have

--I(&) - A-1 &+x, for each En. (6)
x x

Since Ax  preserves inner products,

xn

N (& (OX-X)-(&2-x), for &' E2 EImn. (7)

nConsider the open set X( () CI , which is at most a translatedx

and rotated copy of P. Indeed, it is quite simple to see that

a-7C (2) x(), (8)
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showing that 0 E ;( (2)), since X. (x) = 0, and, for d > 0,
x x

3( (Q Bd(x)) X ({ )}rBd(O). (9)

x d d

Next, let us choose any y E 3{X ()}, and let U be an open' x y

neighborhood in ]Rn of k-l(y) e , y E C(U ) such that

grad @y( ) Y 0 for G U y, c = U y y() 0), and- yy y Uy)

U-y E Y ( ) < 01. Setting U := R ) y :=

C(.7 ), it is plain that U is an open neighborhood of v

in I , y E C (U y), a{Xx()X Uy - { U E UI Dy( ( - 0), and

X ()'U - {Y 6 U y ( < 0). Further, for & E Uy,

- dy (j(l(C))OA (1

where A x is the adJoint of A XI . Since A Xis an orthogonal

y yx x

transformation, it follows that

-1 -1)

From (11). we have Igrad y()ln = Igrad $yX ()i 0 0, for
Y n.xn

IUy. Thus, x (',) is 1-regular• Moreover, grad " ( M is

then, for { (n))} Uy an outer normal for ;{3( ()) at
while grad is(thea is an outer normal for n at gl(),

and (i) shows also that
gradlll i (0 A.. . ...... gr d (.( ) 6 I I i . (11).. .. .
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{ (E) - A v( l(()); (12)

(12) clearly holds for each 3 X ?{C (2)}. In particular, notex

that

(n) (13)V a{cX (01 (0) -Ax X ) en  ( 3

Now, if a > 0 and a E (0,1) are such that (VI.60.1) holds, we

find, whenever "1' 2 E 3{X (2)),

Axv@, -Axva x n

(I j (Yl(2))-V (Wfl( l)) n
K xa" - x (& (2)- ( lq ) nn

- al 2-Ei jn

Consequently, we reach the entirely expected conclusion that X (2)

is a Lyapunov domain; any a > 0 and a E (0,1 as in (VI.60.!)

for aQ will also do for a{.W" (P)}. In view of (13), we obviouslyx

have

T P (PI)}(0) - { ER n o . (14)
x

Next, we see that

(A v)n _ 0 whenever y E T x): (15)

(x), (A e(n) = -le(n)

for, supposing that y E T x AY). (e

0. As an implication of (15), we find
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,n(,) = {-r ()O).v.(x) - ( -x)ev (x), for E eRn. (16)

In fact, let & EIn. Then x (&)-x - Px (-x) E T (x), so

{A (r ( )-x)}n _ 0. Writing - x+(&-ix (&))+(i (C)-x), we compute,

using (3) and (4),

3C ( A ( -x)

- Ax (&-nx ())+Ax (7x ()-x)

S (x))evaQ(x)}e n)+A x(rX()-x);
-(n)

since x(&) = - (C)ee n the first equality in (16) follows.

For the second equality of (16), we can write C-nx(M = ( -x)+

(X-Tx( )) and simply note that x-x () - -Px (-x) E T x). It

is important to point out also that

x - N' 0xT for i - 1,...,n-l. (17)

To see that (17) is true, choose i E {l,...,n-l} and E G1Rn.

Then

M -3( &)-( Oi (& }9 (n)

- {A (&-x)-A (r (()-x)}*e(n)

A (C7t ())oe(n)
x x

& ( )),-v )e(n) (n)
-n .

m0.
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Finally, it is easy to show that

X (x+T an(x)) - J&{ R n n _ 01: (iS)

if e Tan(x). then Xx (x+) - Ax, but (A)n = 0, by (15):

on the other hand, if & E Rn and (n _ 0, then A-1  E T W(x)

(since A-v(x) &. eA(n) 0) and X (x+A ) -0

(iv) We shall define X : n-x+T () - IR by

( .= (X( ) ,...,<-I(i)), for each E 6 x+T.W(x). (19)

Obviously, ( is continuous. From (18) and the injectiveness of

R( it is routine to prove that x is a bijection. Since the

inverse 1 - x+T (X) is just the map -Kl (,,O) on
x x

n• -1 T ()n- in
]Rn - l , we see that *-i E C nR n ). Then IC is a homeomorphism,

x x

with

n-i

n -1

,Ai  Dx '( ,O) i

n-1

-A Aenn-i (20)
i -i x ni

n-i

f 1,

for each 6 ~n 1  It is trivial to see that x+T~fX

?a~x)
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(" { E1Rnj X(7) - 0}) is an (n-l,n;-)-manifold; the preceding

observations combine to show that J is a coordinate function
x

for x+T3 (x).

From (17) and (19), we obtain Ki= iior for i E
x x

{l,... ,n-1}, so

Xx ( (x'' -1'(x) ((O r xs). (21)

Finally, suppose that r E x+T (x). Then

I n-Xln" I x ()-R x(X)m n IN(&)In lix(0)tn1l (22)

since 0 - 0, in this case. Thus,

for each n-i (23)

We begin our study of Lyapunov domains by pointing out one

of their most fundamental and useful properties.

[VI.63] P R 0 P 0 S I T I 0 N. Let 2 C]Rn be a Lyapuncv doma.it,

asid 6eteC.t a > 0, ot E (0,1] 6uch tha-t

IV(x2)-V( ( I < aix -x 1' for xl, x2 E ;P.
iv 2x)-vix 1  n- 2 i n2

Let d be any pc, itive numbeba totizyin9  ad a < /2: in patticua,

(a,a,d) may be a set c6 Lyapunov cons&z tz for% P. Then, in each
x E K, TI (:- .x aBd(x)) L an injec tcn o6 '-Bd(X) 0 t c.

xx x d d

x+T aa(x).

P R 0 0 F. Choose x E 3. We begin by showing that, whenever

|a
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E E .B(x), there exists a 6 > 0 such that +s'. (x) E

for -6& < s < 0, and E+sv (x) -' for 0 < s < 6&: since

Q is 1-regular, we can find an open neighborhood U of r in

Sn and a function (P E C 1U ) such that grad C(y) 0 0 for

y E U, Brd, - {y e U (y) - 0}, and QU - {y E U

%j(y) < 0) (so also R-U {y E Uj $D(y) > 0)). Choose

e > 0 such that B () C U, and define : (-,c) IR by

1(s) ( +sv x)), for Isl < C.

Clearly, p E Cl(-,c), p(0) - 0, and '(s)

grad ( (+sv (x))v (x) for Is: < c. Thus,

1'(0) - grad C )vao (x) = grad ¢ & )ln-V (Q)ev (:), (I)

the latter equality following from the fact that grad € ( ) is an

exterior normal for a3 at E. Now,

V OVW 1 IV (W-V W1x 2

1 a2  2 a

1 2 d2a

> 0,

since !&-xI < d and adt < '2. In view of (1), we conclude that

4'(O) > 0. Since 4' is continuous, there exists a 6 & (0,E)

such that y'(s) > 0 if Is! < 6.. The mean-value theorem, coupled

with the equality J,(0) - 0, implies that 0.(l+sv (x)) - ; (s) , 0
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if -6 < s < 0 and ¢(+sv (x)) = P(s) > 0 if 0 < s <

Therefore, &+sv (x) lying in U whenever Isl < e, we obtain

the inclusions r+sv (x) E Q if -6 < s < 0, +s'(x) (X -

if 0 < s < 6,, as required.

Now, let us suppose, contrary to the conclusion of the

proposition, that there exist distinct I' 2 E 3"Bn(x) for which

TIx(Gl1 n( &(2). Writing y x(l) -x (Y we have, by

(VI. 62.3),

S= Y+sWvCx), i 1, 2,
1 i ao

where s i-Y)OVa3(x): since 2' it must be that sI #

s2, and we may suppose that sI < s2. Set

(Y 2) :- {y+sva (x) s s < s < s2};

note that (&i) C B (x). Now, whenever -6 < s < 0, then

y+(s2+s)v (x) - 2+sva,(x) E , while 0 < s < 6 implies that

y+(s +s)v (x) - &l+sV(x) E f', whence it is clear that (Eir

meets both 0 and Cf Since ( is obviously connected,

and 9 and f2 are separated, (&1Y must meet K5. Thus, there

exists s3 E (SiS 2 ) such that :- Y+s3 V(x) E G B (x).

Repeat the process with, in turn, &I and & 3 and &3 and &2

there exist s4 E (Sis 3) and s5 = (s3,s 2 )  for which i :=

y+siv (x) V ,-Bn(x) for i - 4, 5. Continuing in this manner,
gs d

we generate a set of distinct points {s Ii VI [sit 2 uc
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that E. :- Y+s V(x) E 'B n(x) for each i EN. Let (s.
1. 2. ; d 1kk=1

be a convergent sequence in {s I i EN), converging to so E

[SlS2]. Clearly, l im  & 0 :- Y+s 0v(x), from which it is

easy to see that 6 E KnBn(x), since ;2 and {y+s',j (x)I

s<s < S2 } are closed, the latter being contained in Bn(x). We

have E0+sV 4(x) E Q if -6 < s < 0, E0+sV3s(x) • f2 if

0<S<6 . showing that E. - E + s 0)v (x) E (K)' for

some sufficiently large rn. since the sequence (s ) 00 consists

of distinct points and converges to so. This is impossible, con-

tradicting the inclusion {rij i EN) C aO. We conclude that x

is injective. 0.

In Parts I-V we deal with a number of integrals over

boundaries of Lyapunov domains. In order to facilitate those

computations, we wish to derive here various estimates involving

geometry quantities associated with such manifolds, as well as

point out the existence of certain distinguished coordinate

systems in the boundary of a Lyapunov domain. We begin with the

prototype setting.

[VI.64] L E M M A. Lct S C 1Rn be a Lyapunov domniz. Su~pps

that 0 E al, Wth T3 (0) { ] 6 i nI n - 01 and v,(0) - e (n)
aI n

Let (a,a,d) be a 4et cS Lyapuncv constants 6o4 0. As uuat,

nT~ rB n(0) T~ (~0) dcnctes the te t,%cticn o~ the c'togoonaz

plojetcn; in the pte5eiL cagc, we have
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n-1,~ 0) - ),O), for E : Bd(O).

Then

WL 'the .6e-t D {&GEIn-1 1  ( ,O) IE O~rB n())"00 d
~..i,..,ni)(3nB~ n(0)) Zs a~n open niteZhbc thod c'6

0~ i sin-i, and thete exi4t6 a Junctiocn f - c1I (DV0)

Qr B n(0) =G(f) D i(,()I . (1)

d 0

f(b) - (no fl( 0 ) 6 each - D V0 ,

no i6 the map (Z,f))v '- (,0), 6et E DP (2)

0 0

We atso have

NflB (0) - nli(Vo{O)). (4)

(i) D Zs ,stat~Zhe ~wt 4epec~t -to 0, and

B37 '(0)cDo C B n-(0). (5)

(iLi) The SoLtowing est&natc hotd tchemcvv, & E G Bn()

whti(,... ,n-i) 1 n-i
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(1) a() := v . n-

1 2 2a(>1- -ar7

2 '0
(6)

1 2 d2a
2

7

2 0

8
Igrad f(Z)I n-1 ar(O; (8)

3)i6 j E n , In 1, and i.e = 0, Zzen
n n

lv (Eoali 7- aro(E); (9)

(4) rf(o(0 - n

< ar0  (11 o(r))
(10)

n-1

< ar0 ()

C~hlCte ~ 8 f65)"/

wite-t7 a fa 4 9j 10

V) Ivo(), grad ro(&)I < ia( 0, (11)aror:) 0f 0,€O, 1

8-

vtze ;i :- (n-1)a+a;

(6) '!n-i rO(.lO()) > - ro( ). (12)
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P R 0 0 F. (i) According to [VI.63], F0: ;QflB(0) - T--(O) is

injective, so nl-: rL0(aIB'(0)) - aQB (0) is defined: specifically,

if y E nO(rB-(0)), then there is a unique y E ,,)B(,) for

n-1, (-y 1
which y - R =(4) ( ...,yn,0), and we have n (y) = 4y

0y y y 0y
1 n-i n(yl,. .. ,yn-,4) . Set

D = E4 GRn-l (o) C IO(GB'(O))};
0 0

the equality D = (l,... ,n-l) (O Bn(0 )) clearly holds. Define

f: D0 -'R according to

f() :- (0)- 0 (Z,O), for each Z E D0

Now, if C E 3DIBn(O), and we set n-:= (,...,n-), then W(4) =

(4.0), so E Do, and n 0 in6,O))

(.',f(E)). On the other hand, if 4 = (4,f(b)) for some C eDO

then (4,0) 6 n0 (af rBn(o)) and 0l1 (4,0) = ( (1)n(10))
0 d0 0

, =, showing that & C 32.B n(0). Thus, (1) is correct.
d

Statements (2), (3), and (4) are sufficiently clear.

To complete the proof of (i), we must show that D0  is open

in R n -l, and f E Cl( 0 ) (obviously, D O  contains 0 E Fnl

since rB n(0) contains 0 I n). Then, select Z E V09 and set

n:- 1(Z,O) - (4,f(b)). Let U be an open neighborhood of 4 in
04

Rn, and 0 E CI(u ), with grad @ (y) # 0 for y E Uh, Y'U -

{y E U 1 0 (y) - 0), and U- (y E U 0 & (y) < 01. Set

U m- U('In(0) and :- 0 I : U is an open neighborhood of

in IRn, E 6 C1 (u_, B.U4 {y E 11! 4 (y) = 0), and

4 C



{y E u l c (y) < 0). Observe also that v( ) -

grad V(&)/Igrad (01 Let us show that % n() # 0: we have

= grad V ( ) - {grad 11 (Wn')M) . (0),

and

.1 2 1 2 2d1a~2

(0)4Vn(0) - 1- .Iv ()-v (0)n12 1 - 1 a r 0 (C) > 1- a > 0,

since ada < 1/2. Thus, ( ) > 0. Consequently, by the Implicit

Function Theorem [VI.21 (and its proof), there exist an open neighbor-

hood U 0 C U.. of & in IRn, an open neighborhood V of in

In-1, and a unique function 0 r C1(V-) such that

{y E o & ..(y) = 02 {y Emni = (yl,..., Yn-1 Ev,

n

Clearly, since U&0 C U., ;U = {y E U&j (y) - 0). We claim

now that V- C V0 and - fi Vk: first, if i E V, then

(i)) G E" U I  C(y) O - U C a2rBn(,), whence

(i.0) - n EO (CBB(O)); this says that i E D0.

Moreover, since (zn(i)) f olzi,O), we also find that 0(z) 2

0o1) n(,O) f(i). The claim is now verified, and we can assert

that each F E D0  possesses an open neighborhood V C V0 such

that f! V4 E C (v. This shows at once that V0  is open in

I n-I and f E C'(Do), completing the proof of (i).

We shall deviate here from the order in which the conclusions

of the lemma are stated, proving now (iii.l-3):
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(iii.l) (This has essentially already been shown, in the

proof of (i).) Let OE a WBn (0). Recalling that v-.(O) e

dO n

and IV ()vaQ(0)I < a -O' - ar0(), and noting thatand a~ -. 20 In n

IV M)-v (0 ) 12= 2-2v (C)vu (0), we find

Vn( ) - v ( ),v (0)

a a S1
v - ,,,a(c) -v ,, (o) 1 n

2 n

1 2 2a> 1- a r0 ( )
1 22c

>1- - a d 2
2

7
8'

since ade < 1/2.

(iii.2) Choose E 1 Bd(0). By (i), & 6 G(f), so

( ,f(Z)), where = (l1 .n-i and it is clear that

V f{+g 1 2 1 (-D1f(&) ..... -Dn 1 f(),l), (13)v~n( ) {1+1 gradf()a 1

since ~rSB n (0) - {y E Dex1I yn_f(yl,... yn-l) 0}, while
d

VbO) e (n). In particular, 1+'grad f(k)12 { n (W-2. Use

of (iii.l) yields

_{n (W2

grdf(&)Ini-I n 2
2{v~() }2

22a 1 44()
a r0 ( - a r

( 1 2 2L ( 2(i- ro (0
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ar0( )" {1- F ar {)'2 1 2 2 ' L
al- a r 0 M)

Sar0() 2

Now, if # 0, Z.e., if r0 ) > 0, then the latter inequality

is strict, so (7) follows. Likewise, (8) follows from the inequality
1 2 ( )

immediately above, upon noting that 1- . a 2r (&) 7/8.

(iii.3) Let E n, with El^n 1 and Eee (n ) . 0,n n

in 0. For E aST Bd(O), we have, from (13), with
= (61,..n-i),

1 n-i
/{l+!grad f()n-l J iiDf()'

from which, with the Cauchy-Schwarz inequality and (8), there

follows

< D < Igrad f(4)l - a

(ii) Since D = d the inclusion

D -(0) is plain. Note that, if E D and :

then 7 E 2M2 B:(0), and so (8) gives

Igrad f(): < a < - a <a (14)n-i- 7 ar0 () 7 7

Select any ElRn-  with 1 - 1, define ( ) Cm by

... IIl i i li .. i i .. . .... .... .n ...../ ll , ... .. ..j... .'
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(>) : 01 €c 0

Since V0  is an open neighborhood of 0 in mnl 1 , and D0 C

n-i
Bd  (0), (M) is non-void, open, contained in (0,d), and contains

(0, ') for some t' > 0. We shall prove that, in fact, (E) -
7

(0,;%) for some '> - d; this will clearly imply that 0 is

starlike with respect to 0, and also that Bn -l(0) C D0, whence• Zd
9_

the proof of (ii) shall have been completed. To see, then, that our

claim is correct, we begin by appealing to the basic structure

theorem for open subsets of IR (cf., e.g., Hewitt and Stromberg [20],

Theorem (6.59)), according to which there exists a countable set I,

which we can take to be N or {1,...,N} for some N E V, and two
12 1 0

sets (% i E I} and ( il i E I) in FR such that i 0,

1 2 < d for each i E I 2 1 for each i E I such that
i < i -' i i+l

1 2 2
i+l E I, and () - Uir I  (; , ); note that the ni ad i

i E I, are not in (E). We wish to show that I - {1} and

2>7
d. Define F-: (E) -IR by

F:( ) :- f(C ) for each 6 (i).£

n( ) 2+{£ 2 , 2

Since (;Ef( C)) E B (0) we have C2 -I(ln 1+:f(; )2 <

2
d2 , so

IF'(MI /{d2- 21, whenever C r (). (15)

The inclusion f G C (D0 ) implies that F^ 6 C ((c)): clearly,

F - grad f(;i), for each ; 6 (i). (16)
C



Using (14), we conclude that IFj < 4/7 on (E). For each i E I,
1 2

the mean-value theorem shows that F21 (r g is then uniformly
E

continuous, and so FA(g. +) :+ lim F,(;) and F.( .) :=
C 1 1 C C1+

1 .2
lim F-(M) exist. Letting C in the inequality

2-
i

2 2 22+{F( )}2 < d , there results
C

2 2 2- 2 2
( 2+{ FZ(C)} 2 < d (17)

2-2 F 2-
Suppose that strict inequality holds in (17): then (rIE F-( ) E

E 1

B n(O). Let ( )l be a sequence in (02'2 converging to ;2

Then the sequence iF i l C G(f) (0) converges

2- 2- 2,, 2

( l£,0) and so implying that l2 e 0 But this says that

(t), which is false. Consequently, equality must hold in (17):

(22)2+ -)2 d2 .  (18)

Note that, since F-( +) - F(O +) + f(O) - 0, we have, applying

the mean-value theorem to the continuous extension of 
F I (0, 2

2 2- 2- + 2
1 2-1 for some

2 2- 2
(0,4 ). Since JF I < 4/7, we obtain JF.(- < (4/7)'C , so,

1 C C

from (18),

d 2 2 ,Fj 2- 2) <2 V1+(16/49)) 2. (v657) (19)1 {(l + cF(i 1}}<€/

1 2
Now, suppose that I D {1,2}, so there exist C2' 2 with
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2 1 2 12
i <-<2 <2 < d and (C C (i). By retracing the reasoning used

above, mu~ttis mutwndiS, we conclude that

1 2 1+) 2 -d. (20)
(C +{F-(;) 2 201 c 2

From (20) and (15), for 4 > C2 and C E (2),

IF.( +)j - /{d 2 -(Cl) 2) > /{d 2 - 2} > F ( )I. (21)

1 2
Now, supposing that C2 < < 2' we may again apply the mean-value

theorem to assert that there exists some GO E (C2 , such that

"2 C

SIF (2+) I-I FC(4) 1

> '{d 2 -( )2 }-{d2 2

the second equality follows from (21), the second inequality from

(20) and (15). Applying the mean-value theorem to the function

2_ 2 1sl- 'f 2s 2 } on the interval 2 (recalling that 4 < d),

we can write, for some 0 E

22

E /d 2-(°)2

0 1 4 -;
-~ (CO)

d 2
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1

d 2

Consequently,

1 , 4

2 <F'(0 )jld < f d,

so

2 1 4
i 2 C 1 < 4 d. (22)

Combining (19) and (22), we arrive at the impossibility

/65 2 /65 4 36d <--7" <" d' < ML d < d.
7 1 7 7 49

Thus, we must have I - (1}, so 6)= (02' . Further, (19) gives

2 7 7
1 >65d •  9 d.

As noted, statement (ii) follows.

(iii.4) Let E a:)Bn(0). Then n :1 (,..., nl) E DOI

and H_~f~) 1 (t:O), so
.r-in

( _ 04 (n = ( nj ( r 0 1( )n (4,0)1 W01( ),

giving the first equality of (10). Note also that

r - _ n-1 If( )I 2 I> - (23)

Now, since f(0) 0, (10) clearly holds if 0 0, so we may

suppose that #0 (so 0 #, as well).

Choose any non-zero z 0 : V0 is starlike with respect to

0b
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0, so si E V0  whenever 0 < s < 1, showing that we can define

G : [0,1] IR byz

G-(s) :- f(si), for each s E [0,i].z

f E CI(Do) and D is open, so G. e Cl([0,1), with0 0Z

G!(s) - grad f(sl)ei, for 0 < s < 1.

z

G (0) -f(0) -0, and we can write
1 1

f(i) = G(1)-G G(0) G' dXl grad f(si).z dl(S). (24)
z z j z 1 I

0 0

The estimate Igrad fjn_ < 4/7, following from (8), produces,

with (24),

1

jf(i) 
<  Igrad f(si)l nll 1 dAl(S) <  (25)

0

Re-applying (24) (with - -i ) and (8), and using (25),

1

lf()I f Ifgrad f(sZ) n -IWIn_1 dX1(s)
0

1

all]n- f l(s&,f(sZ))r" dX I(S)
7 n

0
18 l i _ {IsZ,2 nct/

" ai f +If(s&)I /dXl(S)

0
1

8 ' 2 + 16 112 1 }a/2< 7 aj n-1  ISkin-1 49 _'n-1 dX1(S)

0

8(651/2 1 a
7 _j a"ln-i f d(s)

0
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8a i651' 1+" 7(1---- ) ' i n-1 "

Since CM- flO(C)I ro(rO(0 )), and jnl < ro(C), the proof

Sine Inl n 0n-i 0

of (10) is complete.

(iii.5) If C aCYBd(0), C # 0, and n : (C 1... -l),

then

IV grad ro(W k (0. + C )

k1n n

n-1

-k-i " n

< (n-l). f a'r0(&)+iaOr0()

aro(C),

by (9) and (10), having noted that n _ f(k) and ln = r (C)

Thus, inequality (11) is correct.

(ii.6) Again with C G 8 )Bd (0) and := (C. ,n-l
''

we have 1- l12-jf(4)l2, while (25) gives !f(Z)1 <
Thus, WI > IC212 which leads to

~ Inin- 1  In 49 n-i'

> V lI, which is just (12). 0.

[VI.65] R E M A R K. Let us bring out several other facts

concerning the setting of the preceding lemma: retain the notation

introduced there. First, choose E (C ...,n-) G V0  and consider

the line segment {(,s)i s > f( ))r'Bn(0): this segment is

di



connected and does not meet a2, by (VI.64.l), so it either lies

in n2 or is contained in £2 .We shall show that, in fact, there

are points of the line segment in £2,whence it shall follow that

{(k,s)I s > f(b)1^B(O (1)
d

by the preceding observation. Then, setting ~ ~( ,fCZ)) E G

let U &C R n be an open neighborhood of &, and 4 E C 1(U)

such that grad 4 (x) #0 for each x E UV 2a'Uc {xEU

0 x) -0), and n-U {x~ L' U ?Mx< 0}, so n =rU

{x E UI 'D x) > 0}. Then v = E grad 0C () /jgrad mln so,

using (VI.64.iii.1],

D 4P(~ - grad 0 CE)oe (n)

8l n

> 0:

since 0 & 0 and D n is continuous on UV, we may assert

that 4: (4+se > 0 for all sufficiently small positive s, so
n

also (~fc)+s) &+se (n) for all sufficiently small
n

positive s. As noted, this implies that (1) is true. Reasoning

in a similar manner, we can also deduce that

{Zsls <f(i)Y'B(0 d ~ (2)

whenever rz D 0 In turn, from (1) and (2), it is easy to see that
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if E B'(0) with (n,... -l) E Doi then

E l- ' iff n > f l , . , n-l )

(3)

E E iff n< fl,& (n-l)

(and, of course, & 3Q iff &n f( l ,n-i))

The more general statement in which we are interested can

now be proven.

[VI.661 P R 0 P 0 S I T I 0 N. Let £ C Rn  be a Lyapunov docrrai'i,

and (a,a,d) a zet of Lyapunov con6tan.6 Sor 0. Let x E 32.

RecaLC the n ottions eztabZt ;cd in (VI.621.

W Define hx: n...,Bd(W) - 1n-i by

h :- OR
x x x

Then hx(3Q'Bd(x)) ,6 an open neighborhood c6 0

in ]Rn - l , which is ztitLke with )tpect to 0 and

auch that

B7()C h ( 09)B d(x)) C B d (0).

(ii) (; B(Bx) h i6 a cocdi.nate 5ystcm in K:. We

d x

have
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h-1 10 (k1 ()
x x x x di''

Jh-1 M {v Ohxl (x)} - -n h (9Q-B(x)). (2)

and

Jh " I < V2 (3)
x

(iii) The 6oLrowing timatu ,. hoed fo each t E agrBd (x):
Ud

12 2zr 1 a2d2 7
(7)~ ~ ~ -W > a 2r 2(r) > 1--La2d 2a> 7 (4)K.2 x 2 8

(2) i6 i E T (x) with 1in = i, t'e
n

Iv ar'(t); (5)

() tn < ir1+a (71x(1,)) < irl() (6){5 Krx() n x -- x '8 ~ (61a

where a a 1+0L).:

(4) v. grad rx(C)I < ir"(&), i' # x, (7)

8
9x XX -

wqhele i :- (n-1)a+a.;
77

5) r() < r (IT Q)) <_ rx() (8)

P R 0 0 F. We shall use here the notations and results of (VI.621.

We showed that Xx (Q) is a Lyapunov domain, 0 K x) E 3{.Y (C)},

T (n)}(O) - It E n n 0}, and v ) (0) - e

Consequently, Lemma (VI.64] can be applied to Xx (Pz). Note that

(aa,d) is a set of Lyapunov constants for X (2). We denote by

1oe (n-l n
71the orthogonal projection map t I- ( 1 ... 1&~ 0) on ]R onto
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T{ (0), and T := i 0 ( (() )'B(0); x and x have
a - ha0e

their meanings as established in [VI.62].

(i) Let us observe first that

J( on 7 3oO on In. (9)

For, suppose that eRn: then, on the one hand, r 0e3(3 ) 0

(!(E),...., n-l (.),O). Since 1() E x+T (x), (VI.62.18) gives

x( W)) = 0, while (VI.62.17) says that XoTT - X1 on Inx XX X x

for each i E {l,...,n-l}. Thus, on the other hand, X cr (x ) =x x

O( ' " ,0) ",.. -(),O). This proves

(9). Next, because X (D 2)B~) a 3{J((0) } (B (0), and 1: is

defined on the latter set, it is easy to see that (9) implies

X on - n o(. I 3afBn(x)), (10)
x x 0 x d '

which gives directly

i° 0 R -(1, ....,n-1) o(K . UM B(x)) . (11)

x x x d

If we define, as in the statement of the proposition, h : 1 cTx x x

then (11) shows that

-~) . ( .... ))
hx .Bd x P.

(12)
_=(I ..... n-l)( .(() n(0)) ;

(30 x (P)}d

according to Lemma [VI.64], the latter set is an open neighborhood

of 0 in n , which is starlike with respect to 0, contains
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B7 - (0), and is contained in B (0). Statement i) is proven.
7 d9

(ii) Obviously, 3rnBn(x) is relatively open in 32.; we

must show that h is a coordinate function for 3S2Bn(x). Now,

n is continuous, since Tr is continuous, and R is injectivex I

by (VI.631; JC is also continuous and injective (cf., [VI.62.iv]),I

whence it follows that h1  possesses these properties, as well.

We have shown in (i) that hx(3QY'Bd(x)) is open in IRn - l . The

equality h 1 - I11 1o (Y 1j h (an2IBn(x))) is plain enough, from the

definition h :- o . We claim that we also have
x x x

h1 CZ) - JC-1 o1- C^. for each E h (93 - ~x) (13)

To prove (13), let e h (3 Bn(X)) =(oil (3 fB (x)), ho ,0) E
x d x x d

~(o(Pf(x) ,Bo{((x)))) an -' -l O is defined.

Moreover, from (11),

h&100l 0
1 (4,O)) _ .(l,... n-1)( l- C0)

Also, if & E aff)Bn(x), then (h (),0) E XOr. (ErB n(,))

n0oXx(o-B B(x)), so we can compute, using (VI.62.18) and (10),

k(1orl0
1(h (0)0) - lol 1  (( ) 0)

k-lO -lj O (0

~x 0 0 ~~x
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We conclude that (13) does indeed hold. By Lemma [VI.64], we can

write 0(,0) - ( n,(O1 ) (F,O)) for E hx (acB d)), and

we know that the function 6 (nol)n(&,0) is in C(h (DB(x)));

as in [VI.64], we call this function f. Thus, with (13),

hx ( ) x ( '(f0) ( ,O)), for each E h (aSYBn(X)). (14)
x x 0 x d

Clearly, (14) implies that h-l E C (h (M1B n(x))1R n); in particular,
x x d

1is continuous, so hf: fr is adh Bd(

morphism. To prove that h is a coordinate function for .

we now need demonstrate only that Jhx > 0 on h x( Bd(x)):

letting Z E hx(31B(x)), we find, from (14),

Dh- (O= Dl(F ())}oDFo(Z) - A-loDFoM'x X 0 0 x0

where A R: I n _ n is the linear isometry introduced in [Vl.62.iii,x

and F0 E C (hx(a,2rBn(x));F
n ) is just the map zI- 'ol(z,O) -

(, ln(,0 - (i,f(i)), the latter in the notation of [VI.62].

The nx(n-l) matrix of DFo(0) with respect to the standard basis

vectors of kn  and ]n-l is Just

1 0 ... 0

0 1 0

0 0 ... 1

f,l( ) f,2) 2 f,n1 ()

so



-1 DI (n-i)
--lb

(h , Dh-F (nl)x 0 i

-1 ( ( n - 1 ) )

- A e (n)+f je (n )) for each i E {l....n-l}.
x i 'i n

Now, because A- I  is a linear isometry, it follows from an exercise
x

appearing in Fleming [15], p. 309, that

I A 1 A-1yl _ -1 yij

n-i nwhenever {y i}il C Consequently,

1 n-I

Jh- (h )((n)

. InAl Al(e (n)+fi(Z)en )I
_ -ii-l (n)+f, .( n)

(e e n  )1 (15)

n-i

i-i

V{l+lgrad f()I 2_ ,

the penultimate equality resulting from a simple computation.

Clearly, (15) shows that Jh- () > 0, which completes the proof
x

of the assertion that (32qB (x),h ) is a coordinate system in 2.

To verify the representation (2), again choose a point

E h1 ( Bd because f E Cl(h (;D'Bd(X))) and

n - , . . .. . . i i r. .(x))},



(n)with the equality v { (i)}(0 = e , it is easy to see that
x

V ai X 0 T 0 z~o) /{l+ grad f( )j2_ I

Thus, using the inner-product-preserving property of A , (13),X

(VI.62.12), and the fact that A v (x) - e(n)
x3 n

v ~(h- ())Ov (x) - v (h 1 (C))eA v W(x)

(( 1( D) 'e(n)

x

Vn1

/{i+Igrad f( ) n- 1

Upon comparing this result with (15), it becomes evident that (2)

must hold.

To secure the estimate (3), simply use (15) in conjuncrici-

with (VI.64.8), setting { :- (Z,f(Z)), and noting that ada <

1/2:

1h l 1+ -a 2r02 ( o1 < + L-4 a 2 d 2 a  < + 161 < /2
A 0 ~j x/l 64 2 49~ 49f

With this, (ii) is proven.

Throughout the following proofs of (ii1.1-5), is a point
of Wr Bn(x), so R (:) e ,{, (,,),,,n(0). Each statement follows

x x d

from a corresponding estimate derived in Lemma [VI.64] (applied to
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X( (0.), recalling that (a,a,d) is a set of Lyapunov constants forx

X (2), as well as for S).x

(iii.l) From [VI.64.iii.l],

(n) 1 22a( , 1 d2a 7Va{X ( )}( X( )),e n  > 1-7 ar I- ( ) > 1- a , (16)

x

but U O ) x n a( ( ) x -{ (P)} x

xx x

Axv 3 ()9A x v (x) W .()o ap(x) (by (VI.62.12) and the fact that

A is a linear isometry), while r0(I(f )) - ()-K(X)In =
x 0x

C-xl (since X is an isometry). Thus, (4) results from (16).
n x

(iii.2) Let C- T aQ W, with Iiln =1 hn ; ln 1

and A-e A .A v .(x) - i-v(x) - 0, showing that we may
x  n x

apply [VI.64.iii.3]:

! ( Or M () 4.A <I A_7 aro (K() (17)
x

Since v (3C (E))Axc -- A V (&)eA - v(O.i, and
x

ro0(X(&)) - rx(), (5) follows from (17).

(iii.3) According to [VI.64.iii.4], we have the estimate

l~xO~0(x()) n  1 l+C[
x& xr 0  (0(x(r))) < ar 0  W'x (0),

which can be written

IN( X0<i F K T<i ~ ((0(8
.. . . .. . . . I I x .. . . 0,. .. .. ..
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upon recalling (10). (6) follows from (18), by the isometric

property of X and the equality Kx (x) - 0.

(iii.4) Suppose that 0 x. Then x(M) 0 0, so

[VI.64.iii.5] implies that

Now,

X (0 Ax (-x) -x

grad ro(x) - r rW(() Ax r - A grad r

so the left-hand side of (19) is just JA v.(Z)OA grad rx( ) =

Iv,,(&)* grad rx()i. Clearly, (11) then follows from (19).

7
(iii.5) From [VI.64.iii.61, r 0(Of>(2(rM))) > (':())I

but ro(o(.(( ))) - r (X C, (x0)) - r (R ()), and r (X(,)) -
O x0x x x x O x

r(&), whence the first inequality in (8) follows. The second

inequality is obvious. 0.

Pogorzelski [42] cites a fact which is quite convenient to

have available when estimating various integrals over the boundary

of a Lyapunov domain. We shall formulate and prove the pertinent

statement here.

[VI.67] L E M M A. Let i be a Lyapunov domain in mmn. Lct

a > 0 and a E (0,1] be, 4c~pectiveiy, a H61dct' coc.fieh.jLt and

fr61de, exponeaut 6or% vg i.e., ,such that
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V,(Y2)-v , (yl ) In -- cevvt Y, Y2 E

Then bthc.te exists a positive number dO, depending onZy On a

and a, uch that 6or each d E (O,d 0 ) the.e exits a Yd E (04),

depending on.y on a, a, and d, pc5,se.,ing the folcowing

pLo petty:

wienever x E a, and thten z E {x+sv (x) I

s E 3} and C E 9B n(x)..{z}' wat chosen,

the inequaitie,

-Y< r (
z1 17(&) '<

z Y

P R 0 0 F. Let d > 0 with ada < 1/2 (so (a,a,d) is a set of

Lyapunov constants for n). Select x E 3Q, then z E {x+sv a(x)I

s E R), then & 6 Bn(x){z}'. Observe that rC(T'(C)) > 0, for,

if z - "n(c), then z 6 x+T a2), so --x E N (x) T aQ(x), which

implies that z - x; thus, n (M) - x, so - x (since nx

is injective, and TI (x) - x), and we arrive at the equalityx

- z, contradicting the hypothesis on &, and proving the claim.

Next, since z-x E N M(x) and Rx (E)-x 6 T (x), it is clear that

rV(0x()) - V r 2 (x)+r2 > r

Similarly, because &-7x() 1E NM(x) (cf., (VI.62.3)),

rx(f)- 2 (,x( ))+r2 (n )) > r ((1")). (3)

-"~~ • l II i x - " " - . . ]1| . . . ". . . . . . . . .
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Proceeding to the main line of reasoning of the proof, first use

(VI.66.iii.3] to write

IrI 1E4r n< r(-() < r14a(n )
z x x x

from which there follows

ar+x()x x r z Q) r_ (IxT x
rz(1xQ) r z (1 +r z (1X M 4

note that a > 0 and depends only on a and a. With the

inequality (2), rz(x)) > r(l (7)), (4) implies that

r()
1-ar(cT)) < < l+ar (nx(&)),x x

and then, because rx (TI()) < r () < d,

r (6)
-a z a

1-ad < r ;)< 1-I-d (5)

Now, simply choose d > 0 such that max {2ad', idga < 1, and
00 0

suppose d E (0,d0 ); since ada < 1/2, (5) holds. Set Yd :

l-d ad.  Since 0 < ida < 1, Yd E (0,I), and l-(ida) 2 < i, so

l+ida < l/(1-ids) a 1/d. Consequently, (1) follows directly from

(5), with Yd as defined. Obviously, do  depends only on a and

a, while yd depends only on a, a, and d. 0.

The following auxiliary construction is used in conjunction

with the divergence theorem to derive representations of solutions

of Maxwell's equations in Part III.
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[VI.68] L E M M A. Let Q bc a non-void pcupet sub-s-t c;, jRn

witich i.6 a q-egluta% domain for 6ome q > 2, and such that z

16 compact. For- each E E IR, Zet the function G:: g _ jn

be defined by

GE (x) := x+Ev(x) or each x E , (U)

and 6et

0 :- {x E Q1 dist (x,3.2) > -0) i6 < 0, (2)

a :- {x G - dist (x,Ml) > e} i6 E > 0. (3)

Then there exZ6st an E0 > 0 such that wheneveA 0 < IE! < Cot

(i) GC i6 a (q-l)-imbedding, tking n onto aC,

(Zil P2 C , a (q-1)-tcgutCat dowaiZn,

and

(///i) v -sgn c .v o(G£) -1 on M .

Futher,

(ivJ lm JG- 1 ,unifcrmy on aQ.
£ - 0

P R 0 0 F. We note at the outset that Q is a Lyapunov domain

(by Remark [VI.61.b]), v 6YQ 6 Cq-I(a;n) ([VI.57]), and

v al is Lipschitz continuous ([VI.26]). In particular, we can

find a set of Lyapunov constants for 11 of the form (a,l,d).
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(i) First, for any real c it is easy to see that GE E

cq-l( 3 ;,n), for, choosing a covering collection {(U ,hI)

of coordinate systems in 32, so h- I E Cq(h (U ):F n ) for each

I E I, we have

G'Oh- . h-1 +EV Oh on h (U ), (4)

so GCoh -1 E Cq-1(h (UI ).Rn )  for each i E I, since v is in

Cq-l(1BRn). This implies that the claim is true. Observe also

that GE is continuous for any e.

Suppose now that fcJ < a-: then G is an injection.

Indeed, let xl, x2 E a, with G'(x I) C (x2), c.e.,

X1+CV(x 1 ) a x 2 +cV (x2 ). Then

lx -ln -JJ-v0 x )v (l ! < a'lc 'lx2-xlln'

which can hold only if x - x2, since alei < 1. This proves

our assertion. But now, for these same c, GE: V2 -- GE (;) is

a continuous bijection, and a2 is compact, whence the map is a

homeomorphism.

To show that GC is a (q-l)-imbedding whenever IZI is

sufficiently small, we must verify now only that GE has rank n-i

at each point of a, or, equivalently, that JGE > 0 on ;2

whenever Icl is sufficiently small. Clearly, the latter shall

follow once (iv) has been established. To prove (iv), we begin by

pointing out that we can assume that the covering collection

M I(U ,hl I of coordinate systems in 9n has been chosen so that
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I is finite, and, for each i E I, all partial derivatives of

h-l and v oh- are bounded on h (U ), while

J(hlI A ...A(h 1),n) is bounded below by a positive number on

h (U ), a consequence of the compactness of 92 and the properties

of coordinate systems. Then, from (4), it is clear that, for,

say, IdC < 1,

n-I1 n-i
A'(GE ' (h1 )' +M*.c on h(U

for each i E I, for certain positive numbers {M} Using

(VI.24.3), it follows that

JGI U1 < i+M'.I for each E C I, (5)

for certain positive numbers {M'} EI . Assertion (iv) surely

follows from (5), since I is finite. As remarked, we have now

proven that GC is a (q-l)-imbedding if Id is sufficiently

small; among other consequences of (VI.30], we now know that

G (M2) is a compact (n-l,n;q-l)-manifold for these same c.

We shall next prove that, for lEt sufficiently small,

GC ( n) - {y e Q-'I dist (y,aQ) e}, if c > 0, (6)

whereas

GE 01) - {y G Q1 dist (y,;0) - -c}, if C < 0. (7)

For this, we first appeal to [VI.591, which tells us that there

exists a positive 6, for which
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x+sV (x) E -' if 0 < s < 6Q9 (8)

and for each x E 3- .

x+sV (x) E if -6n < s < 0 (9)

Now, suppose first that 0 < c < min (6n, d/2, 1/2i}, with a

(> a) given in [VI.66.iii.4]: we shall prove that (6) holds

thereby. If we assume that y C C and dist (y,an) - c, then

there exists xy E an such that Iy-xyIn=E and y-x EN x)

(cf., [VI.33]), whence y is given by one of x +V (xy),
Y D y

Xy-CV (xy); y cannot equal the latter, for otherwise we should

have y E Q, by (9). Thus, y - x y +rv x) - GC(x y). To secure

the opposite inclusion, choose any x E 3. Then Gt Ex) - x+Cj (x)

', by (8). We must show also that

6 :- dist (GECx),an) :- inf IGc(x)-zln a E. (10)
z 6=a

Since IG (x)xin - C, *the inequality 6 < c is plainly true.

It is just as clear that 6 > 0. Suppose that 6 < e: then

GE(x) - k+6v aCi) for some k C an with x # x, and

x-i -0+ ~~i-IV n(x)tVan(
' Cc-6)+c" vsn(i)-v Cx) In

< Cc-!)+ac.Ix-Rln

< C6) .1x-iln2 n*

yielding
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xin< 2(c-6) < 2E d
I n

Thus, x E ;Bn(i) and x # x, allowing the application of

[VI.66.iii.4), giving first

v,,,x)e grad rj(x2j < i~-jn

then

2c-x-ij -V (x)e grad r (x) > -2(Ix-n)

We can write, further,

6 2 .xC ()i2 _ -X 2 +E +2cv (x)*(x-i),

2 Ix~t.~2 ()2xI2so

2c.lx- I nV(x)o grad rj(x) +Ix- n  622

and, now recalling that E < 1/2i, (11) implies that

0 < (l-2ic)'Ix-xi < 62 -C2 < 0,

which is impossible. Thus, 6 - c. This completes the proof of

(6), if E is as specified. (7) can be verified in a similar

manner, for E < 0 and Ijc sufficiently small.

Statement (i) will be completely proven once we have shown

that, for jc sufficiently small,

a * = {y E n' I dist (y,BQ) c), if C >0 , (12)

and



32 {y E SI dist (y,K) -E}, if C < 0, (13)C

which we shall do presently. Let us make some preliminary

observations: by the continuity of the map xi- dist (x,;2) on

Rn, we know that dist (( ,),Ua0) is open, while

dlst-1 ([,-),K) is closed in Rn, for each n > 0. Thus, since

is -dist- ((los)e) if E > 0,

Q: dist-I (,),aS) if E < 0,

each Q is open. Moreover, the sets given by
E

{x C- S dist (x,aP) > -c} if £ < 0,

C
{x 6 - dist (x,DR) > c} if C > 0

must be closed; in fact, if c < 0, one can easily show that

{x r6 Q1 dist (x,af1) > -E} - {x E Q-1 dist (x,3K2) > -}

- Q - dist - I [l , f)

with similar reasoning for 02 if c > 0. We claim that£

- whenever Ijc is sufficiently small
(14)

(and positive).

To see that this is so, suppose first that c > 0: since 2 is
E

closed and certainly contains , the inclusion - C ' 2 must
E C

hold. Now, assume that x E 2, z.E., x E f-' and dist (x,9,) >

E. If dist (x,;) > c, then x 6 C £ , so we must examine onlyz. I dls (x,) > , thn x fC
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the possibility that dist (x,;2) := inf Ix-zI E: supposing'nz

that this holds, and that c is small enough, it is easy to see, as

before, that we must have x G (x) - +V i() for some x E 2.

Since it was shown that there is some c > 0 such that

Grl(aP?) - {y E C'1 dist (y,3f) = n} for 0 < n < c,

if we select any sequence (c C (0,-) with e -0 0, and
jj~l n

assume that e <, for all sufficiently large j we find that

E+C.
i+(c+ c k(C) = G 3 () E {y E 0'I dist (y, 2) = E+C.' C ,

Since (G Ci)) =l converges to +E C) = x, we can conclude

that x E P- if c < i. Thus, (14) has been proven for the caseC

c > 0. The consideration of the case E < 0 proceeds along similar

lines, and so we omit the details. Now, having (14) available,

(12) and (13) can be proven easily: if jej is sufficiently small

and e > 0, then

=c- n

£ E

S{x •2 n- dist (x,K) > c}{{x E Q-'I dist (x,-.) < E}U2-

{ E Q-'I dist (x,an) - 0,

giving (12), while if c < 0, (13) follows in much the sare fashion.

Since we can now state, by (6), (7), (12), and (13), that

GC(:.) - C for each non-zero c with Ic! sufficiently small,

9£
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(i) has been verified.

(ii) Let us begin here by showing that £ is a regularly
C

open set, provided ciJ is sufficiently small. We investigate first

the case in which e > 0: we are to prove that

Q-0 , Q (15)E E

whenever c is sufficiently small. Recalling that £ is open,

the inclusion Q-0 D is obvious. Now, let x E Q-0 and choose
C C C

a positive 6 such that B (x) C £- If we can show that B'(x)
6 6

Q then we shall have x E - ' completing the proof of (15).
E EC

Assume, then, that there exists some y E Bn(x)-2; this implies

that y E Q-' - , hence, if c is sufficiently small, that
C C

dist ty,3a) - e, and y - i+V a(y) for some G C ;. Note that,

again if c is sufficiently small, a- - {x E Q-'j dist (x,a2) > E).
E

Now, certainly we can select n C (O,c) so that y-nv.(G') E

B n(X), but then

y-nv(y) - y+(E-n)v3a() G {x E n-'j dist (x,an) - c-n),

implying that

y-nva) fx Cx e &' dist (x,aS2) > Ei

and so contradicting the inclusions y-nv (y) • Bn(x) C Q-. Thus,aa 6

if c is sufficiently small, B (x)"$ - 0, ie., B n(x) C Q

giving (15) for these same e > 0. The proof of (15), in case

c < 0 and I€] is sufficiently small, is similar.
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Now we know £ to be regularly open, with (by (i))
C

I- GC (D) an (n-l,n;q-l)-manifold, if Ije is small enough.C

But we may therefore invoke [VI.55] to conclude that £ is aC

(q-l)-regular domain for these same c.

(iii) We suppose here that ej is so small that i) and

(ii) hold. Choose any x E DO. We aim first to prove that

T R(x) - Tar (GE x)). (16)
C

Since each tangent space here is an (n-l)-dimensional subspace of

F.n, (16) shall follow once the inclusion

T (GE(x)) C T W ) (17)
£

is known. To prove (17), let S E Ta (Gc(x)). Then there exist
E

6 > 0 and E, E C ((-5, 6)*n) with i(-6,5) C acic , C(0) GEx,

and q' (0) a B. We define P: (-6,6) -bFn via

-1
Co) :" GE O*E(C) for Id < S, (18)

and f (-6,6) - n by setting
V

fv(a) := v ovC) for Io < 6. (19)

Let us assume, for the moment, that

S(-60,60) e C1((-. 0 ,60)Rn) for some 60 E (0,6]. (20)

Then, since ,((-0,E0)) C M and (0) x, we see that
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t'(O) E Ta(x). Further, since n is a q-regular domain, reason-

ing which is by now familiar allows us to assert that there

nexist an open neighborhood of x in R , U x, and a function

Px E Cq(U ) such that grad X(y) # 0 for each y E Ux, and

V grad 0 CY)-I grad 4 (y) for each y E ; U (21)aily = ga x(Y n • x x"

In view of the definition (19), (20) and (21) together imply that

f is of class C on a neighborhood of 0. Therefore, we can
V2

deduce that f (0).f'(0) = 0, since if.(o)i = 1 for Io7 < 6,

v.., v(x).f'(0) = 0, whence f'(0) E T (x). But, by writing

E , GCoG o = C-GE¢ - +cviop = +- ftf on (-6,6), (22)

we come to the desired result

B 1 '(0) - t'(O)+cf'(O) E T~ x).

This implies that (17) is correct; as remarked, (16) follows.

Of course, the preceding reasoning depends upon the validity

of (20) whenever Icl is sufficiently small, independently of the

x chosen in '2. For this, observe first that, by (22),

(C)+cV(G(c))-C (a) - 0 for Jai < 6. (23)

Making use of the q-regularity of n and the compactness of 3a,

we can find a finite collection of open subsets of Rn, {i}l,

which covers ;, and a corresponding collection of functions

Cq(u )}P such that, for each i 6 {l,...

i -
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m Igrad 0iin< Mi on Ui (24)

k Mi on U, for J,k - 1,...,n, (25)

for certain positive numbers mi and Mi, and

V-(y) - Igrad i(y)I-1  grad 0 (y) for each y E anU .  (26)
ail n gr

As a further restriction on c, because of (24) and (25), we may,

and shall, suppose IvI  to be so small that

det -i y)l > 0 for each y E aU,,

d jk+E• grad n >k

(27)

for each i E l,...,p}.

Now choose Z E {l,...,p} such that x E U, and define a function

F: U x(-6,6) ,Fn by

grad (P (Y)
F(y,)grad ) -T- (a) for y E U2 , ci <. (28)F~~o : yc grad t£(y)[ n

It is clear that F E C (U2zx(-6,6);V
n) (recalling ip E

CI((-6,6)I] )), and

F(x,0) - x+CV (x) -; (0) - (0)+EV( p(o))- (0) - 0, (29)

by (23) and (26). Moreover, by (27), it is easy to see that

det ((F~k(x,0)) lJ,k<n) > 0. (30)

With these facts, the implicit function theorem says that there exist

an open neighborhood U C U 2 x(-6,6) of (x,O), a 6 > 0, and a
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uniqcu function _,: (-,6) -n such that (tp(c),3) E U for

Io < 6, and F(i_(o),o) - 0 for Jul < 6. But also, because

P: (-6,6) -]Rn is continuous (this much is clear, directly from

the definition (18)) and 1(0) - x, we can find a 6' > 0 such

that (E(o),o) G U whenever Iu < 6', while it is easy to see

that F(,P(o),o) - 0 if Jol < 6, because of (23), (26), (28),

and the fact that iP((-6,6)) C an. Thus, i and W must in fact

coincide on a neighborhood of 0. Since the implicit function

theorem also asserts that G cl((-,6);1Rn), it follows that

is of class C1 on a neighborhood of 0, i.e., (20) is true. It

is imperative to observe here that the uniqueness assertion of the

implicit function theorem requires for its proof no smoothness

properties of the implicitly defined function, as one can check

(cf., [VI.2]).

With the verification of (20), for Icd sufficiently small,

the equality (16) is known to hold, whence

Nap (GC(x)) - N (x), (31)

and V a (GC(x)) is given by one of vQ(x), -vaQ(x) (va is
E C

well-defined, since (ii) holds; cf., [VI.57]). Suppose first that

c > 0: assume that v a (GC(x)) - var(x). We already know that
r

there exists a positive El such that y+sv3 n(y) C and
dist (y+sv (y),M2) - s whenever y 6 a and 0 < S < E Thus,

if E E (0,E1) and s E (ccl), we have

IJ
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x+v(x)+(s-e)va(x) p e

so, according to our assumption,

G (x)+(s-E)v n (G(x)) en E2

£

which implies that

Gc(x)+i'vn (GE(x)) E Q whenever 0 < s < Ei-;

this is impossible, for it violates the definition of v D (Gt (x)).

Consequently, we must have v a (G£(x)) - -v a(x) for E > 0 and

sufficiently small. Similarly, if C < 0 and cli is small enough,

one can show that v (Ge(x)) - v DR(x). We conclude, then, since

all restrictions imposed on c were independent of the particular

x chosen in an, that

V oG - -sgn E "V on ?,

if C # 0 and IdE is sufficiently small.

Statement (iii) obviously follows from this.

(iv) This fact was verified in the course of proving

(M). 0.

We complete Part VI by using the divergence theorem and the

estimates developed for the geometry associated with the boundary of

a Lyapunov domain to derive a generalization of Gauss's formula

(cf., GUnter [19] or Mikhlin [34]).
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3
[VI.69] L E H M A. Let P be a bounded Lyapunov domauz 6z )R

Let E E 3 , Lw't 3 < 1. Forc xCiR3 , define x{.}I:

iR 3 r){x}l -1R by setting

rx{ } :- {(3r/2)2+(iI I2)} -3 12 (1)

Then

0 , if x I-',

f r r{ } dX 2 21T(l- 2)1  j x- E 9f r x 'i a " x

SX I4i(1 1 ,) - j6 x Q.

P R 0 0 F. Throughout, x is fixed in 3. First, we observe

that since, r = rx {61j-rx, rx, j } for i,j E (1,2,3),X'ij x i ~ ~

(rx2r r {&}) -2r- 3{ (& , ) 2+(1- I 12)} - 3/2

x x'i X 2. x Z 3~

-r-3 faI )2 12 3/2

-3rx2 {& (Irx 2 5+(1_ 12)  5/2

(krxk). m(6 mr, ir xm ) r, '

3on I3:-x} ';

noting that (6 m-rXi rX'm)rx'i - 0, it follows that

(r- 2  .r (') W 0, in IR3,){x' (3)

x x,i x

Also, we obviously have, on R3l{x}', recalling that 3 1,

0 < (1 1 2) (&Zr '  )2 +(1i_ 2 j 121+ ,_,2
(- 3) _• z 3) _ 3~ (-'. 3) .,
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whence

We shall now verify (2) by considering, in turn, each of the

three possible positions for x.

(i) Suppose that x E -': clearly, in view of the inequality

preceding (4), and noting that Q is a normal domain, we may apply

the divergence theorem in S along with (3) to arrive at (2) in this

case:

r rx v rx{E) dXa f (rr *rxf{}),. dX2 0.
x-i X' Q 2. x

(ii) Suppose that x E SI: now, for any e E (0, dist (x,E,2)),

we consider the normal domain aY'B (x)- '
. Since the function

r-2 r{&) lies in C7OR3 {x)'), the divergence theorem and (3)

produce, in this case,

r-2 rr a~ } dX + r * r (-r ).r {1dX
x xx' aa x x,l" i x ;B 3(x)

aQ aB 3(x)

2

- f (rx2 r x i ' r x ({) d.3

32~ (x) -,
E

-0,

so
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fr- 2 r t )*1r~riv.rx{ } dA3

(5)

21

rx{(&Zr ) +(1-10 aB 3x)
aB 3xW x xk 3 C

E

For the evaluation of the integral on the right in (5), it clearly

suffices to assume that x - 0 and " i 3e 3  , as the use of an

appropriate affine isometry on IR would show. To compute the

integral in that case, we shall use a spherical coordinate function:

let S : (O,)x(0,2i) - aB (0) be given by
E C

12 1 2 1 2 1

S( W ) : (c sin w cos w , c sin w sin w , C cos W

(6)
1 2

for 0 < w < r, 0 < W < 2r.

Then S maps (O,v)x(O,27) onto 3B (0)(N', where N is a closed

subset of aB (0) of X -measure zero, and is injective.
E 3B 3(0)

Setting 0¢ :- s-l: DB C (O)-NN* (O,i)x(0,2i), it is easy to check

3 3that (aB (0WN',0 ) is a coordinate system in aB (0), which can

be used for the computation of f dX whenever f G

aB 3 (0) C

L (aB 3(0)), since N has measure zero. Routine calculations give
1 (

3S C( 1, ) e2 sin w and (E r )oS C(, ( )- 13 cos W,

for 0 < w < - and 0 < < 27, the latter when x - 0 and

S= 13e3 , as we are supposing. Thus, the integral on the

right-hand side of (5) is just
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2-71

0 k 3 Cos 2 (4 +1- 2?12  ,&

27 sin Lo,

J 2 2/12r {&2 Cos2 wi +1_I 3}
0 0 { 3

The integral appearing on the right in (7) is completely elementary;

11

if 113 0, it is Just I sin w 1 - 2, while if 0 < 13 < 1,iff
0

it can be rewritten as

3 lI )-1/2

2 r du

I 13 (1-1&1) 0 (l+u2 )3/2

the value of which is easily found to be 2(1-I )- . Itf

that (2) is correct when x E .

(iii) Finally, we assume that x E U2, the most difficult

case to analyze: let (a,a,d) be a set of Lyapunov constants for

9. hefuntin -2 r i
T f iva .r {&} is continuous on 347-{x}' andx

we have, by [VI.66.iii.4], the estimate

Ir- (y-r Y), i Y). {&(y) (11&2.-3/2 r-2..) ij(y)- ( l
xr (y 'xi(Y4 ay'x{ (l 1 3J  x  Xy'ix

(iI_,2.3/2 xrx2 -a(y), (8)

for yE 3P^Bd(xYnx)';

since ;..B (x)' is compact ('0 is compact), there then exists a

positive k for which
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I r-2  . < kr( 2-c) on Z "{x}' (9)

-2 <1 x{& on 92-Ixeio

The measurability of r x rxi o

-2 .x{}•/()
it is easy to see that (9) implies that r2 r xi 1 L

(cf., also, [IV.19]). Thus, we can assert that (cf., [1.2.39])

{ x rX, dX

S1 (10)

lim + r x  rX'iVal •  dXB •
E - 0 90B 3(x)'

For 0 < e < d, let us apply the divergence theorem in the normal

domain T'B3 (x)-': in view of (3), we find
C

r 2 r i .r {} dX
() x x,i 3 x a

. B:(x)C')
BI 3 2 .W{, d

CC+ rx 2 r (-r ')r {&}d X )

3B (x)3'2

f (r 2 r x'1.F r ) i  dX 3

3 xi x 'i 3
2B3(x) -'Crr * 1) d

so, from (10),

- r 'r d lim 4  r-2. dX . (11)

x  x a Ii+ .an

al 
B3 !,3
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We must now evaluate the limit appearing on the right in (11);

for this, it suffices to evaluate

lim0+ f r0
2P0{4} dA 3 (12)

3 33B~ ~ (0)yaB3(O)'l? O)

where C I3  is a Lyapunov domain, 0 C: B, Tq (O) - (y C 3 3

3 (3)
y . 0}, and v(0) - e 3

)
, since the general case can be reduced

to this by employing the affine isometry Xx introduced in [VI.62],

or, more precisely, its restrictions to the spheres BB3(x), to
E

replace the integrations appearing on the right in (11) by correspond-

ing integrals over Kx{aB3 (x)n }S - 3B3(0)^( x{Q}. In fact, from

[VI.52] (cf., also, [1.2.26.a]),

r_ 2.Fr{ d}

f x x aB 3 W
3B (X)dB(

-J (r 2.*r{})o .* -C d% (13)" xe daB 3(0)

V (DB 3(x)sl) X B
x C

r0  2 r {A } dX
33

oxaB3(O)

in whc 0': X[ B() B(x) " ' 3  is an m-imbedding taking

3 3

aB (x) onto aB (0), and A is the linear isometry defined in
E C x

[VI.62.iii], the second equality following from a simple calculation

taking into account the properties of X-1  and A., and the easily
X "
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verified fact that JX-1 - 1 on B 3(0) for E > 0. We do havexc £

0 a({(,x (2)}, Ta{3 (n)}(0) fy E I 3 1 y3 = 0}, and v 3( (0) =

(3)X X
e 3 ), while Xx (Q) is a Lyapunov domain, any set of Lyapunov

constants for Q also being a set of Lyapunov constants for X ().x

Once we have verified that the limit, as e - 0+, of the last

integral in (13) depends only upon IA x03 ,  the sufficiency of the

simplifying assumptions shall become evident, since I I3 IAxCA3 "

Let us then consider (12), under the hypotheses listed. We

intend to show that

lim ~ r-2 r dX

£ [0 Bf 0n 0 3B~ 3(0

(14)

- ro2 o{ } dX 3O
0£3 0 B (0)

and

2 2 -1r rO{(} d- 21r(-W 3 ) for each c > 0, (15)

f 00 & 30F (0C)3

wherein

3 31 3
R 3 :- (y ER 3  y < 0. (16)

Clearly, from (14) and (15) it shall follow that the limit in (12)

is also 2r(1-I2I-1 hence, in particular, depends only on

By the reasoning outlined above, we shall be able then to conclude

immediately that the limit in (11) is 2-(i-k I3) with which the

proof of (2) shall be complete for this final case.
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To verify (14), write

R3 yE3 3 3 0(7

3 3C+ :- g (O)rR+, for 0 < e < d, (18)

and, for 0 < E < d,

3 3 - 3 3, 3 3:- B (0)M ('3}{ B (O)RI ' - S'O)B (O)qR .  (19)C- - C - C

3 -- 3 3 - 3 3
Noting that aB (0)")0 is the union of 0-IDB (0)YR, mYBB(0)f1Rm+

CCC
and a set of X B3(0)-measure zero, we have

C

f r_2 r0 f~ d)X 0 r_2 r{} dX

aB~a (0)l a 0)l aB (0)aB3(O)rlk3 C aB 3 () n

E - C

1~ 2 1f r 0{ dX 3(0 f r 0( dX3
Ca ( 0 3B(0)1C- C C+

(20)

1 ij -r / { dX (0)
1-20 3 + f r0 {d 3

a E (0) T B •()
_ CC+

C aB (0)
C- C+ C

having applied the inequalities in (4) (with x - 0). To estimate

the integral in (20), we shall use the spherical coordinate system

(aB (O)C'N',G ), introduced in part (ii). Note that the setting
C £

here coincides with that considered in Lemma [VI.64] and Remark

(VI.65], so that we have available the facts proven there. Let

(a,3,d) be a set of Lyapunov constants for ,. 0 denotes the
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1 2 3orthogonal projection yi. (y ,y ,0) taking R onto T.(0),

and 10 := 0o ('0B (0)). We assume now that E is any number in

the interval (0,(7/9)d). Let us first study the case in which

y r £', N': then r0 (f0 (y)) < r0 (Y) E < (7/9)d, so T0 (y) E

-3 1 200 Bd(0)) by [VI.64.ii], whence (y ,y ) is in the domain

0 of the function f introduced in [VI.64]. Since we also have0
y E , (VI.65.3) shows that y3 < f(yl y2), with which the

estimate (VI.64.10) yields

cos 01(y) y

< f(yly 2 )
C

1 i-€ - 1 2 1 2- aro( ((0 y 'y 'f(vy2))

1 - l+a" ar 0  (Tro0(Y))

<- 1+a
< -aE

-a= ac

Thus,

sup cosC (y) < a. (21)
Y6€ N' -

Suppose next that y C S2 N': again we have r( )(v)) < E <
C-00

7/9 d, so (yy 2 ) ,E D0  Now, yE 2', by (19), so y E -'

and (VI.65.3) implies that y > f(yly 2) Again using (VI.64.10),

1l 1 3
Cos 1(y) = - y

C E
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> 1 f(y ,y )

- If(yl,y 2) I

_ ar 0  (r0(y))

1 -

-aE

Consequently,

inf cos 0 (y) > -a (22)
y 4E N'

C-

Now, set

e E - inf 0(y), (23)y E -C+ N' E

e _ sup 1 (y). (24)
y E N' E

C-

Since cos is continuous and strictly decreasing on [O,r], we

see that

Cos 6 + = sup cos C(y) < ac, (25)

c4- y nN' _ -

by (21) and (22). Returning to the expression on the right in (20),

we can clearly write, using (25) and (26),

. j.
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1 2  f d/321-) aB) (0
C- .1C

2.(1 1 )-3/2 1 1 1 2
3  

sinw dw d(2
0 ej+ (27)

23/

2, (-13)-3/2 .{cos e+ -cos ea

<3< 47a(l- 12 -3/2a

4 'E1[ 3)  C

With (20), the estimate (27), holding whenever 0 < E < (7/9)d,

implies (14).

Next, choose any c > 0 and consider the integral on the left

in (15): using the spherical coordinate function,

r. 2r(O d(2
0 03(3(0)

aB 3(0)1-]R 3

f I 2i 1 222 3/2 /2( 2)

(Tr/2, Tr)x(0,21T) {(£0£S(wI 2)+iw

It is no restriction to suppose, as we shall, that 2 0 and

>I 0. Setting, say, e :-0 if -0, and

0|

1 1 12

e Cos /j~j 3) in t w(9
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we then have

m]I 3 (sin e(3)+ cos e( 3 ).

Obviously,

grad r(S (Wi,2)) - 1 12

0 C C C

1 2. (3)+ l 1 2 (3)
- sin w cos w + sin w sin we

+CosWIe (3) 33
so

1.) = , (sin e sin w cos W +cos e cos WI)
OOw 1  <w (Www 21

for 0 < W1 < , 0 < W < 2.

Denoting, for brevity, the integral in (28) by I, we can now write,

more explicitly,

3 f
(w/2, w)x(0,2n)

1sin w 12
2 1 1 2 2 3/2 dXIC( . )

{l+y (cos e cos W +sin 8 sin w cos W2) d(-

where

- 3  &(1-2)-1/2

Let us first rewrite the preceding integral, using the translation

invariance of A2' as
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(1-i ) -3 /2  {(n/2, n)x(0,i)

sin 1 1 2
2 1 1 2 2 3 / 2 d 2 (W ,W

{1+y (cos 8 cos w +sin e sin w cos W

(30)
+ Jr

(7r/2, iT) (0,iT)

sin 1
{+ 2(cos 0 cos w -sin 8 sin w cos 2 2 3/2 dX2(W W

Now, consider the map gl: (0,1)x(r/2, 3r/2) .]2 given by

1g1CP'W) :~P cos w
for 0 < 1 1, n/2 < w < 37/2, (31)

210,u) p sin w

and the map g2 : (t/2, f)x(O,,) defined according to

1 2, 1
g2( ,w ) : cos w ,1 1 2

for n/2 < w < 7, 0 < W < -. (32)
g 2(W 1, w2): sin w 1cosw2

It is easy to check that both gl and g2  are injective, with

g2 (C /2, 7)-(0,1)) - (y E I 2 I y < 0, yl2 < 1)

- g1((0,1)x(-/2, 3r/ 2)),

-gl(P, ) p for 0 < 0 < 1, 7/2 < w < 3r/2, (33)

and
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1 2 2 1 2 1 2
Jg2 ( sin w sin w for n/2 < w < ?T, 0 < W < 'T. (34)

-1 2Consequently, defining g :- g2 ogl: (0,1)x(7/2, 37/2) -m , we

see that g is injective, g((O,l)x(r/2, 37/2)) - (7/2, r)x(0,7),

and

Jgl Jgl
Jg - {(Jg 1)ogl}.Jg - Jg ) 1  

Jg

{(Jg2)og21}Ogl IJg2)°g '

whence short computations produce, using (31)-(34),

Jg(Pm) - ---- (35)
2 -2)1/2 . sin g1(v,w)

and

Cos8 -cos g (p,w) ±sin 8 sin g (PW) -cos g 2(P,w) - cos (w), (36)

for 0 < 0 < 1, ir/2 < w < 3r/2.

Whenever f: (w/2, r)x(O,ff) -1K is Lebesgue-integrable, [VI.52]

implies that fog.'IJgI is Lebesgue-integrable on (0,1)x(n/2, 37/2)

and

f f dX 2 " f fog.,Jgj dA2 ; (37)
(T/2, 1r)x(O,r) (0,1)x(7/2, 37/2)

Fubini's theorem shows that the integral on the right in (37) can

be rewritten as an iterated integral, using either order of integra-

tion. Applying the latter fact and (37), and accounting for (35)

and (36), equality (30) can be recast as
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3~
I=(-3w'2/2

2 2 3/2 d)(P) dX) (38)

r /2 0 {I-P 2i/2 {1+y 202 
cos ( -)1

3n/2 1

+ 2 3 1 2 (dX(P) d)l(-)
I/2 0 - 2 )1/2{l+y 2P2 cos (w+e)} 3

To evaluate the integrals in (38), first define

B

I(B;n) (12 1/2 2 2 3/2
0 {l-p I2{i+r2p I

for each ; E [0,1], 1 ER;

note that the integrand is nonnegative and continuous on [0,1), so

the Lebesgue integral I(l:n) is defined for each n EIR, while

if 8 E [0,1), I(B;n) can also be interpreted as a Riemann integral.

Choosing a non-decreasing sequence (S in [0,I) such th. t

8 1, define fn. [0,1] - [0,-), for each i E F, by
i.

{l- +n -3/2 if 0 < P < Bi,

0 if ai < _ <,

wherein n E R has been selected. Then (f )l is clearly a

non-decreasing sequence of nonnegative measurable functions on

[0,1], so the B. Levi theorem on monotone convergence (cf., Hewitt

and Stromberg [20], Theorem (12.22)) gives
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1 1

lim  fin dX1 - ( lim fi) d X l9
i -0. Go 1' G

0 0

lim I I(1;n). (39)

Now, whenever 8 e [0,1), the elementary change-of-variables

formula for Riemann integrals allows us to show easily that

so, from (39), recalling that 8i -1 1,

1
J12 22/ d),l() -I(1-n) (40)

{i-P2 } /2{i+n202} l+n2 40)

Since (40) holds for each n C , we can use it to reduce the

equality (38) to the simpler form

rl/2
I - (1-kI"' "-3/2  f 12 d l(W)

3 1T/2 cos -(-W-e) 1
[ r/2 1

3r/2
+ f 1 dXl(w)

1,/2 (1+o )

I- (41)

-I& -1 /2 _{1 sin 2 wdw

22

2 3 sin
2  w

"+e "
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after some simple manipulations, recalling that y : I3(l-I 3 )-1/2

Finally, to compute the values of the integrals appearing in (41),

consider the function a: JRdc(2n+l) - 1 n E ]}' -IR given by

2 -1/2 1i 2 1/2

O(W :- (1- II3) • tan {(l-&13) tan ). (42)

If n :- (2n+l) - for some n E 1, we find

2 -i/2

lim + () - j. (a-I c))/, (43)

n

while if ; E]rn{(2n+l) j n E 1}', an easy calculation produces

2 2 -1
01M - (1-W 13 sin ) (44)

Then, suppose that a, 8 E R and a < 8: if the open interval

(a,8) contains no odd-integral multiple of 7/2, it follows that
8

1&12 di n  W) - lim - 0(W) - lim + O(w); (45)

3 ~Isin w W -. $W )

if the open interval (a,8) contains exactly one odd-integral

multiple of r/2, w0, then, clearly,

8

2 2 dXl(W) lm - (w) - lir + o(w)ai-I103 sin w w -P 8 - W -*

+ lim G(W) - lim +O(W,)
0 dW" i (0 (46)

a lira o(w) - lim + G(w)

3)
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Recall that 8 E [0,w], by (29); we consider each of the possible

positions of e, as follows:

(a) If e - 0, then (41) becomes, using (45) and (43),

S= (i-I32  2.2 lim G() -" lim + C(W) - 22(- 3 (47)

2 W 2

(b) If 8 - r, then, each interval (-1/2, 7/2) and

(37/2, 5r/2) containing no odd-integral multiple of 7/2, just as

in case (i), we can again apply (45) and (43) in (41) to obtain

(1-I10 2 /2. lm_ a(w) - lim + o(w)
3 +

+ lim - (w) - lim + a(w)} (48)5n- 37+

21W

27(1-i w )l.

(c) If 0 < 8 < w, then it is easy to see that

[w/2 -e, 3r/2 -8] and [ir/2 +6, 3n/2 +e] each contain precisely

one odd-integral multiple of w/2 (r/2 in the former, 3r/2 in

the latter), so we apply (46) in (41):

2.-1. _,2.1/2 aiO/ -0
(l-i ) {tan -  ((l-1&13 1  tan (3i/2 -8))

a- (( _2.1/2
-tan ((_1&13) tan (v/2 -))

+tan- 1  - 2 1/2 tan (3722 +2))

((1-12)1/2 tan (0/2 +8)) +21}

- _ , i ii .. . .. .... . . . .- m 3
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2 -1

21(l-ICI- ) , (49)

since tan (37/2 -8) - -tan (3/2 +8), tan (n/2 -8) -tan (n/2 +5),

and tan is an odd function on JR.

Thus, (15) has been proven.

As noted, the proof of the lemma is now complete. 0.
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